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Introduction

Coming soon. Please refer to chinese documentation [https://mmengine.readthedocs.io/zh_CN/latest/get_started/installation.html].




            

          

      

      

    

  

    
      
          
            
  
Installation


Prerequisites


	Python 3.7+


	PyTorch 1.6+


	CUDA 9.2+


	GCC 5.4+






Prepare the Environment


	Use conda and activate the environment:

conda create -n open-mmlab python=3.7 -y
conda activate open-mmlab







	Install PyTorch

Before installing MMEngine, please make sure that PyTorch has been successfully installed in the environment. You can refer to PyTorch official installation documentation [https://pytorch.org/get-started/locally/#start-locally]. Verify the installation with the following command:

python -c 'import torch;print(torch.__version__)'











Install MMEngine


Install with mim

mim [https://github.com/open-mmlab/mim] is a package management tool for OpenMMLab projects, which can be used to install the OpenMMLab project easily.

pip install -U openmim
mim install mmengine







Install with pip

pip install mmengine







Use docker images


	Build the image

docker build -t mmengine https://github.com/open-mmlab/mmengine.git#main:docker/release





More information can be referred from mmengine/docker [https://github.com/open-mmlab/mmengine/tree/main/docker].



	Run the image

docker run --gpus all --shm-size=8g -it mmengine










Build from source

# if cloning speed is too slow, you can switch the source to https://gitee.com/open-mmlab/mmengine.git
git clone https://github.com/open-mmlab/mmengine.git
cd mmengine
pip install -e . -v








Verify the Installation

To verify if MMEngine and the necessary environment are successfully installed, we can run this command:

python -c 'import mmengine;print(mmengine.__version__)'










            

          

      

      

    

  

    
      
          
            
  
15 minutes to get started with MMEngine

In this tutorial, we’ll take training a ResNet-50 model on CIFAR-10 dataset as an example. We will build a complete and configurable pipeline for both training and validation in only 80 lines of code with MMEgnine.
The whole process includes the following steps:


	15 minutes to get started with MMEngine


	Build a Model


	Build a Dataset and DataLoader


	Build a Evaluation Metrics


	Build a Runner and Run the Task









Build a Model

First, we need to build a model. In MMEngine, the model should inherit from BaseModel. Aside from parameters representing inputs from the dataset, its forward method needs to accept an extra argument called mode:


	for training, the value of mode is “loss,” and the forward method should return a dict containing the key “loss”.


	for validation, the value of mode is “predict”, and the forward method should return results containing both predictions and labels.




import torch.nn.functional as F
import torchvision
from mmengine.model import BaseModel


class MMResNet50(BaseModel):
    def __init__(self):
        super().__init__()
        self.resnet = torchvision.models.resnet50()

    def forward(self, imgs, labels, mode):
        x = self.resnet(imgs)
        if mode == 'loss':
            return {'loss': F.cross_entropy(x, labels)}
        elif mode == 'predict':
            return x, labels







Build a Dataset and DataLoader

Next, we need to create Dataset and DataLoader for training and validation.
For basic training and validation, we can simply use built-in datasets supported in TorchVision.

import torchvision.transforms as transforms
from torch.utils.data import DataLoader

norm_cfg = dict(mean=[0.491, 0.482, 0.447], std=[0.202, 0.199, 0.201])
train_dataloader = DataLoader(batch_size=32,
                              shuffle=True,
                              dataset=torchvision.datasets.CIFAR10(
                                  'data/cifar10',
                                  train=True,
                                  download=True,
                                  transform=transforms.Compose([
                                      transforms.RandomCrop(32, padding=4),
                                      transforms.RandomHorizontalFlip(),
                                      transforms.ToTensor(),
                                      transforms.Normalize(**norm_cfg)
                                  ])))

val_dataloader = DataLoader(batch_size=32,
                            shuffle=False,
                            dataset=torchvision.datasets.CIFAR10(
                                'data/cifar10',
                                train=False,
                                download=True,
                                transform=transforms.Compose([
                                    transforms.ToTensor(),
                                    transforms.Normalize(**norm_cfg)
                                ])))







Build a Evaluation Metrics

To validate and test the model, we need to define a Metric called accuracy to evaluate the model. This metric needs inherit from BaseMetric and implements the process and compute_metrics methods where the process method accepts the output of the dataset and other outputs when mode="predict". The output data at this scenario is a batch of data. After processing this batch of data, we save the information to self.results property.
compute_metrics accepts a results parameter. The input results of compute_metrics is all the information saved in process (In the case of a distributed environment, results are the information collected from all process in all the processes). Use these information to calculate and return a dict that holds the results of the evaluation metrics

from mmengine.evaluator import BaseMetric

class Accuracy(BaseMetric):
    def process(self, data_batch, data_samples):
        score, gt = data_samples
        # save the middle result of a batch to `self.results`
        self.results.append({
            'batch_size': len(gt),
            'correct': (score.argmax(dim=1) == gt).sum().cpu(),
        })

    def compute_metrics(self, results):
        total_correct = sum(item['correct'] for item in results)
        total_size = sum(item['batch_size'] for item in results)
        # return the dict containing the eval results
        # the key is the name of the metric name
        return dict(accuracy=100 * total_correct / total_size)







Build a Runner and Run the Task

Now we can build a Runner with previously defined Model, DataLoader, and Metrics, and some other configs shown as follows:

from torch.optim import SGD
from mmengine.runner import Runner

runner = Runner(
    # the model used for training and validation.
    # Needs to meet specific interface requirements
    model=MMResNet50(),
    # working directory which saves training logs and weight files
    work_dir='./work_dir',
    # train dataloader needs to meet the PyTorch data loader protocol
    train_dataloader=train_dataloader,
    # optimize wrapper for optimization with additional features like
    # AMP, gradtient accumulation, etc
    optim_wrapper=dict(optimizer=dict(type=SGD, lr=0.001, momentum=0.9)),
    # trainging coinfs for specifying training epoches, verification intervals, etc
    train_cfg=dict(by_epoch=True, max_epochs=5, val_interval=1),
    # validation dataloaer also needs to meet the PyTorch data loader protocol
    val_dataloader=val_dataloader,
    # validation configs for specifying additional parameters required for validation
    val_cfg=dict(),
    # validation evaluator. The default one is used here
    val_evaluator=dict(type=Accuracy),
)

runner.train()





Finally, let’s put all the codes above together into a complete script that uses the MMEngine executor for training and validation:

[image: Open in Colab]

import torch.nn.functional as F
import torchvision
import torchvision.transforms as transforms
from torch.optim import SGD
from torch.utils.data import DataLoader

from mmengine.evaluator import BaseMetric
from mmengine.model import BaseModel
from mmengine.runner import Runner


class MMResNet50(BaseModel):
    def __init__(self):
        super().__init__()
        self.resnet = torchvision.models.resnet50()

    def forward(self, imgs, labels, mode):
        x = self.resnet(imgs)
        if mode == 'loss':
            return {'loss': F.cross_entropy(x, labels)}
        elif mode == 'predict':
            return x, labels


class Accuracy(BaseMetric):
    def process(self, data_batch, data_samples):
        score, gt = data_samples
        self.results.append({
            'batch_size': len(gt),
            'correct': (score.argmax(dim=1) == gt).sum().cpu(),
        })

    def compute_metrics(self, results):
        total_correct = sum(item['correct'] for item in results)
        total_size = sum(item['batch_size'] for item in results)
        return dict(accuracy=100 * total_correct / total_size)


norm_cfg = dict(mean=[0.491, 0.482, 0.447], std=[0.202, 0.199, 0.201])
train_dataloader = DataLoader(batch_size=32,
                              shuffle=True,
                              dataset=torchvision.datasets.CIFAR10(
                                  'data/cifar10',
                                  train=True,
                                  download=True,
                                  transform=transforms.Compose([
                                      transforms.RandomCrop(32, padding=4),
                                      transforms.RandomHorizontalFlip(),
                                      transforms.ToTensor(),
                                      transforms.Normalize(**norm_cfg)
                                  ])))

val_dataloader = DataLoader(batch_size=32,
                            shuffle=False,
                            dataset=torchvision.datasets.CIFAR10(
                                'data/cifar10',
                                train=False,
                                download=True,
                                transform=transforms.Compose([
                                    transforms.ToTensor(),
                                    transforms.Normalize(**norm_cfg)
                                ])))

runner = Runner(
    model=MMResNet50(),
    work_dir='./work_dir',
    train_dataloader=train_dataloader,
    optim_wrapper=dict(optimizer=dict(type=SGD, lr=0.001, momentum=0.9)),
    train_cfg=dict(by_epoch=True, max_epochs=5, val_interval=1),
    val_dataloader=val_dataloader,
    val_cfg=dict(),
    val_evaluator=dict(type=Accuracy),
)
runner.train()





Training log would be similar to this:

2022/08/22 15:51:53 - mmengine - INFO -
------------------------------------------------------------
System environment:
    sys.platform: linux
    Python: 3.8.12 (default, Oct 12 2021, 13:49:34) [GCC 7.5.0]
    CUDA available: True
    numpy_random_seed: 1513128759
    GPU 0: NVIDIA GeForce GTX 1660 SUPER
    CUDA_HOME: /usr/local/cuda
...

2022/08/22 15:51:54 - mmengine - INFO - Checkpoints will be saved to /home/mazerun/work_dir by HardDiskBackend.
2022/08/22 15:51:56 - mmengine - INFO - Epoch(train) [1][10/1563]  lr: 1.0000e-03  eta: 0:18:23  time: 0.1414  data_time: 0.0077  memory: 392  loss: 5.3465
2022/08/22 15:51:56 - mmengine - INFO - Epoch(train) [1][20/1563]  lr: 1.0000e-03  eta: 0:11:29  time: 0.0354  data_time: 0.0077  memory: 392  loss: 2.7734
2022/08/22 15:51:56 - mmengine - INFO - Epoch(train) [1][30/1563]  lr: 1.0000e-03  eta: 0:09:10  time: 0.0352  data_time: 0.0076  memory: 392  loss: 2.7789
2022/08/22 15:51:57 - mmengine - INFO - Epoch(train) [1][40/1563]  lr: 1.0000e-03  eta: 0:08:00  time: 0.0353  data_time: 0.0073  memory: 392  loss: 2.5725
2022/08/22 15:51:57 - mmengine - INFO - Epoch(train) [1][50/1563]  lr: 1.0000e-03  eta: 0:07:17  time: 0.0347  data_time: 0.0073  memory: 392  loss: 2.7382
2022/08/22 15:51:57 - mmengine - INFO - Epoch(train) [1][60/1563]  lr: 1.0000e-03  eta: 0:06:49  time: 0.0347  data_time: 0.0072  memory: 392  loss: 2.5956
2022/08/22 15:51:58 - mmengine - INFO - Epoch(train) [1][70/1563]  lr: 1.0000e-03  eta: 0:06:28  time: 0.0348  data_time: 0.0072  memory: 392  loss: 2.7351
...
2022/08/22 15:52:50 - mmengine - INFO - Saving checkpoint at 1 epochs
2022/08/22 15:52:51 - mmengine - INFO - Epoch(val) [1][10/313]    eta: 0:00:03  time: 0.0122  data_time: 0.0047  memory: 392
2022/08/22 15:52:51 - mmengine - INFO - Epoch(val) [1][20/313]    eta: 0:00:03  time: 0.0122  data_time: 0.0047  memory: 308
2022/08/22 15:52:51 - mmengine - INFO - Epoch(val) [1][30/313]    eta: 0:00:03  time: 0.0123  data_time: 0.0047  memory: 308
...
2022/08/22 15:52:54 - mmengine - INFO - Epoch(val) [1][313/313]  accuracy: 35.7000





The corresponding implementation of PyTorch and MMEngine:

[image: output]

In addition to these basic components, you can also use executor to easily combine and configure various training techniques, such as enabling mixed-precision training and gradient accumulation (see OptimWrapper), configuring the learning rate decay curve (see Metrics & Evaluator), and etc.





            

          

      

      

    

  

    
      
          
            
  
Train a GAN

Generative Adversarial Network (GAN) can be used to generate data such as images and videos. This tutorial will show you how to train a GAN with MMEngine step by step!

It will be divided into the following steps:



	Train Generative Adversarial Network


	Build a DataLoader


	Build a Dataset










	Build a Generator Network and a Discriminator Network


	Build a Generative Adversarial Network Model


	Build an Optimizer


	Train with Runner








Building a DataLoader


Building a Dataset

First, we will build a dataset class MNISTDataset for the MNIST dataset, inheriting from the base dataset class BaseDataset, and overwrite the load_data_list function of the base dataset class to ensure that the return value is a list[dict], where each dict represents a data sample.
More details about using datasets in MMEngine, refer to the Dataset tutorial.

import numpy as np
from mmcv.transforms import to_tensor
from torch.utils.data import random_split
from torchvision.datasets import MNIST

from mmengine.dataset import BaseDataset


class MNISTDataset(BaseDataset):

    def __init__(self, data_root, pipeline, test_mode=False):
        # Download MNIST Dataset
        if test_mode:
            mnist_full = MNIST(data_root, train=True, download=True)
            self.mnist_dataset, _ = random_split(mnist_full, [55000, 5000])
        else:
            self.mnist_dataset = MNIST(data_root, train=False, download=True)

        super().__init__(
            data_root=data_root, pipeline=pipeline, test_mode=test_mode)

    @staticmethod
    def totensor(img):
        if len(img.shape) < 3:
            img = np.expand_dims(img, -1)
        img = np.ascontiguousarray(img.transpose(2, 0, 1))
        return to_tensor(img)

    def load_data_list(self):
        return [
            dict(inputs=self.totensor(np.array(x[0]))) for x in self.mnist_dataset
        ]


dataset = MNISTDataset("./data", [])






Use the function build_dataloader in Runner to build the dataloader.

import os
import torch
from mmengine.runner import Runner

NUM_WORKERS = int(os.cpu_count() / 2)
BATCH_SIZE = 256 if torch.cuda.is_available() else 64

train_dataloader = dict(
    batch_size=BATCH_SIZE,
    num_workers=NUM_WORKERS,
    persistent_workers=True,
    sampler=dict(type='DefaultSampler', shuffle=True),
    dataset=dataset)
train_dataloader = Runner.build_dataloader(train_dataloader)








Build a Generator Network and a Discriminator Network

The following code builds and instantiates a Generator and a Discriminator.

import torch.nn as nn

class Generator(nn.Module):
    def __init__(self, noise_size, img_shape):
        super().__init__()
        self.img_shape = img_shape
        self.noise_size = noise_size

        def block(in_feat, out_feat, normalize=True):
            layers = [nn.Linear(in_feat, out_feat)]
            if normalize:
                layers.append(nn.BatchNorm1d(out_feat, 0.8))
            layers.append(nn.LeakyReLU(0.2, inplace=True))
            return layers

        self.model = nn.Sequential(
            *block(noise_size, 128, normalize=False),
            *block(128, 256),
            *block(256, 512),
            *block(512, 1024),
            nn.Linear(1024, int(np.prod(img_shape))),
            nn.Tanh(),
        )

    def forward(self, z):
        img = self.model(z)
        img = img.view(img.size(0), *self.img_shape)
        return img





class Discriminator(nn.Module):
    def __init__(self, img_shape):
        super().__init__()

        self.model = nn.Sequential(
            nn.Linear(int(np.prod(img_shape)), 512),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Linear(512, 256),
            nn.LeakyReLU(0.2, inplace=True),
            nn.Linear(256, 1),
            nn.Sigmoid(),
        )

    def forward(self, img):
        img_flat = img.view(img.size(0), -1)
        validity = self.model(img_flat)

        return validity





generator = Generator(100, (1, 28, 28))
discriminator = Discriminator((1, 28, 28))







Build a Generative Adversarial Network Model

In MMEngine, we use ImgDataPreprocessor to normalize the data and convert the color channels.

from mmengine.model import ImgDataPreprocessor

data_preprocessor = ImgDataPreprocessor(mean=([127.5]), std=([127.5]))





The following code implements the basic algorithm of GAN. To implement the algorithm using MMEngine, you need to inherit from the BaseModel and implement the training process in the train_step.  GAN requires alternating training of the generator and discriminator, which are implemented by train_discriminator and train_generator and implement disc_loss and gen_loss to calculate the discriminator loss function and generator loss function.
More details about BaseModel, refer to Model tutorial.

import torch.nn.functional as F
from mmengine.model import BaseModel

class GAN(BaseModel):

    def __init__(self, generator, discriminator, noise_size,
                 data_preprocessor):
        super().__init__(data_preprocessor=data_preprocessor)
        assert generator.noise_size == noise_size
        self.generator = generator
        self.discriminator = discriminator
        self.noise_size = noise_size

    def train_step(self, data, optim_wrapper):
        # Acquiring and preprocessing data
        inputs_dict = self.data_preprocessor(data, True)
        # Training the discriminator
        disc_optimizer_wrapper = optim_wrapper['discriminator']
        with disc_optimizer_wrapper.optim_context(self.discriminator):
            log_vars = self.train_discriminator(inputs_dict,
                                                disc_optimizer_wrapper)

        # Training the generator
        set_requires_grad(self.discriminator, False)
        gen_optimizer_wrapper = optim_wrapper['generator']
        with gen_optimizer_wrapper.optim_context(self.generator):
            log_vars_gen = self.train_generator(inputs_dict,
                                                gen_optimizer_wrapper)

        set_requires_grad(self.discriminator, True)
        log_vars.update(log_vars_gen)

        return log_vars

    def forward(self, batch_inputs, data_samples=None, mode=None):
        return self.generator(batch_inputs)

    def disc_loss(self, disc_pred_fake, disc_pred_real):
        losses_dict = dict()
        losses_dict['loss_disc_fake'] = F.binary_cross_entropy(
            disc_pred_fake, 0. * torch.ones_like(disc_pred_fake))
        losses_dict['loss_disc_real'] = F.binary_cross_entropy(
            disc_pred_real, 1. * torch.ones_like(disc_pred_real))

        loss, log_var = self.parse_losses(losses_dict)
        return loss, log_var

    def gen_loss(self, disc_pred_fake):
        losses_dict = dict()
        losses_dict['loss_gen'] = F.binary_cross_entropy(
            disc_pred_fake, 1. * torch.ones_like(disc_pred_fake))
        loss, log_var = self.parse_losses(losses_dict)
        return loss, log_var

    def train_discriminator(self, inputs, optimizer_wrapper):
        real_imgs = inputs['inputs']
        z = torch.randn(
            (real_imgs.shape[0], self.noise_size)).type_as(real_imgs)
        with torch.no_grad():
            fake_imgs = self.generator(z)

        disc_pred_fake = self.discriminator(fake_imgs)
        disc_pred_real = self.discriminator(real_imgs)

        parsed_losses, log_vars = self.disc_loss(disc_pred_fake,
                                                 disc_pred_real)
        optimizer_wrapper.update_params(parsed_losses)
        return log_vars

    def train_generator(self, inputs, optimizer_wrapper):
        real_imgs = inputs['inputs']
        z = torch.randn(real_imgs.shape[0], self.noise_size).type_as(real_imgs)

        fake_imgs = self.generator(z)

        disc_pred_fake = self.discriminator(fake_imgs)
        parsed_loss, log_vars = self.gen_loss(disc_pred_fake)

        optimizer_wrapper.update_params(parsed_loss)
        return log_vars





The function, set_requires_grad, is used to lock the weights of the discriminator when training the generator.

def set_requires_grad(nets, requires_grad=False):
    """Set requires_grad for all the networks.

    Args:
        nets (nn.Module | list[nn.Module]): A list of networks or a single
            network.
        requires_grad (bool): Whether the networks require gradients or not.
    """
    if not isinstance(nets, list):
        nets = [nets]
    for net in nets:
        if net is not None:
            for param in net.parameters():
                param.requires_grad = requires_grad






model = GAN(generator, discriminator, 100, data_preprocessor)








Building an Optimizer

MMEngine uses OptimWrapper to wrap optimizers. For multiple optimizers, we use OptimWrapperDict to further wrap OptimWrapper.
More details about optimizers, refer to the Optimizer tutorial.

from mmengine.optim import OptimWrapper, OptimWrapperDict

opt_g = torch.optim.Adam(generator.parameters(), lr=0.0001, betas=(0.5, 0.999))
opt_g_wrapper = OptimWrapper(opt_g)

opt_d = torch.optim.Adam(
    discriminator.parameters(), lr=0.0001, betas=(0.5, 0.999))
opt_d_wrapper = OptimWrapper(opt_d)

opt_wrapper_dict = OptimWrapperDict(
    generator=opt_g_wrapper, discriminator=opt_d_wrapper)








Training with Runner

The following code demonstrates how to use Runner for model training.
More details about Runner, please refer to the Runner tutorial.

train_cfg = dict(by_epoch=True, max_epochs=220)
runner = Runner(
    model,
    work_dir='runs/gan/',
    train_dataloader=train_dataloader,
    train_cfg=train_cfg,
    optim_wrapper=opt_wrapper_dict)
runner.train()





Till now, we have completed an example of training a GAN. The following code can be used to view the results generated by the GAN we just trained.

[image: GAN generate an image]

If you want to learn more about using MMEngine to implement GAN and generative models, we highly recommend you try the generative framework MMGeneration [https://github.com/open-mmlab/mmgeneration/tree/dev-1.x] based on MMEngine.





            

          

      

      

    

  

    
      
          
            
  
Resume Training

Resuming training means continuing training from the state saved from some previous training, where the state includes the model’s weights, the state of the optimizer and the state of parameter scheduler.


Automatically resume training

Users can set the resume parameter of Runner to enable automatic training resumption. When resume is set to True, the Runner will try to resume from the latest checkpoint in work_dir automatically. If there is a latest checkpoint in work_dir (e.g. the training was interrupted during the last training), the training will be resumed from that checkpoint, otherwise (e.g. the last training did not have time to save the checkpoint or a new training task is started) the training will restart. Here is an example of how to enable automatic training resumption.

runner = Runner(
    model=ResNet18(),
    work_dir='./work_dir',
    train_dataloader=train_dataloader_cfg,
    optim_wrapper=dict(optimizer=dict(type='SGD', lr=0.001, momentum=0.9)),
    train_cfg=dict(by_epoch=True, max_epochs=3),
    resume=True,
)
runner.train()







Specify the checkpoint path

If you want to specify the path to resume training, you need to set load_from in addition to resume=True. Note that if only load_from is set without resume=True, then only the weights in the checkpoint will be loaded and training will be restarted, instead of continuing with the previous state.

runner = Runner(
    model=ResNet18(),
    work_dir='./work_dir',
    train_dataloader=train_dataloader_cfg,
    optim_wrapper=dict(optimizer=dict(type='SGD', lr=0.001, momentum=0.9)),
    train_cfg=dict(by_epoch=True, max_epochs=3),
    load_from='./work_dir/epoch_2.pth',
    resume=True,
)
runner.train()









            

          

      

      

    

  

    
      
          
            
  
Speed up Training


Distributed Training

MMEngine supports training models with CPU, single GPU, multiple GPUs in single machine and multiple machines. When multiple GPUs are available in the environment, we can use the following command to enable multiple GPUs in single machine or multiple machines to shorten the training time of the model.


	multiple GPUs in single machine

Assuming the current machine has 8 GPUs, you can enable multiple GPUs training with the following command:

python -m torch.distributed.launch --nproc_per_node=8 examples/train.py --launcher pytorch





If you need to specify the GPU index, you can set the CUDA_VISIBLE_DEVICES environment variable, e.g. use the 0th and 3rd GPU.

CUDA_VISIBLE_DEVICES=0,3 python -m torch.distributed.launch --nproc_per_node=2 examples/train.py --launcher pytorch







	multiple machines

Assume that there are 2 machines connected with ethernet, you can simply run following commands.

On the first machine:

python -m torch.distributed.launch \
    --nnodes 8 \
    --node_rank 0 \
    --master_addr 127.0.0.1 \
    --master_port 29500 \
    --nproc_per_node=8 \
    examples/train.py --launcher pytorch





On the second machine:

python -m torch.distributed.launch \
    --nnodes 8 \
    --node_rank 1 \
    --master_addr 127.0.0.1 \
    --master_port 29500 \
    --nproc_per_node=8 \





If you are running MMEngine in a slurm cluster, simply run the following command to enable training for 2 machines and 16 GPUs.

srun -p mm_dev \
    --job-name=test \
    --gres=gpu:8 \
    --ntasks=16 \
    --ntasks-per-node=8 \
    --cpus-per-task=5 \
    --kill-on-bad-exit=1 \
    python examples/train.py --launcher="slurm"











Mixed Precision Training

Nvidia introduced the Tensor Core unit into the Volta and Turing architectures to support FP32 and FP16 mixed precision computing. They further support BF16 in Ampere architectures. With automatic mixed precision training enabled, some operators operate at FP16/BF16 and the rest operate at FP32, which reduces training time and storage requirements without changing the model or degrading its training precision, thus supporting training with larger batch sizes, larger models, and larger input sizes.

PyTorch officially supports amp from 1.6 [https://pytorch.org/blog/accelerating-training-on-nvidia-gpus-with-pytorch-automatic-mixed-precision/]. If you are interested in the implementation of automatic mixing precision, you can refer to Mixed Precision Training [https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/index.html].

MMEngine provides the wrapper AmpOptimWrapper for auto-mixing precision training, just set type='AmpOptimWrapper' in  optim_wrapper to enable auto-mixing precision training, no other code changes are needed.

runner = Runner(
    model=ResNet18(),
    work_dir='./work_dir',
    train_dataloader=train_dataloader_cfg,
    optim_wrapper=dict(
        type='AmpOptimWrapper',
        # If you want to use bfloat16, uncomment the following line
        # dtype='bfloat16',  # valid values: ('float16', 'bfloat16', None)
        optimizer=dict(type='SGD', lr=0.001, momentum=0.9)),
    train_cfg=dict(by_epoch=True, max_epochs=3),
)
runner.train()






Warning

Up till PyTorch 1.13, torch.bfloat16 performance on Convolution is bad unless manually set environment variable TORCH_CUDNN_V8_API_ENABLED=1. More context at PyTorch issue [https://github.com/pytorch/pytorch/issues/57707#issuecomment-1166656767]





Model Compilation

PyTorch introduced torch.compile [https://pytorch.org/docs/2.0/dynamo/get-started.html] in its 2.0 release. It compiles your model to speedup trainning & validation. This feature can be enabled since MMEngine v0.7.0, by passing to Runner an extra cfg dict with compile keyword:

runner = Runner(
    model=ResNet18(),
    ...  # other arguments you want
    cfg=dict(compile=True)
)





For advanced usage, you can also change compile options as illustrated in torch.compile API Documentation [https://pytorch.org/docs/2.0/generated/torch.compile.html#torch-compile]. For example:

compile_options = dict(backend='inductor', mode='max-autotune')
runner = Runner(
    model=ResNet18(),
    ...  # other arguments you want
    cfg=dict(compile=compile_options)
)





This feature is only available for PyTorch >= 2.0.0.


Warning

torch.compile is still under development by PyTorch team. Some models may fail compilation. If you encounter errors during compilation, you can refer to PyTorch Dynamo FAQ [https://pytorch.org/docs/2.0/dynamo/faq.html] for quick fix, or TorchDynamo Troubleshooting [https://pytorch.org/docs/2.0/dynamo/troubleshooting.html] to post an issue in PyTorch.







            

          

      

      

    

  

    
      
          
            
  
Save Memory on GPU

Memory capacity is critical in deep learning training and inference and determines whether the model can run successfully. Common memory saving approaches include:


	Gradient Accumulation

Gradient accumulation is the mechanism that runs at a configured number of steps accumulating the gradients instead of updating parameters, after which the network parameters are updated and the gradients are cleared. With this technique of delayed parameter update, the result is similar to those scenarios using a large batch size, while the memory of activation can be saved. However, it should be noted that if the model contains a batch normalization layer, using gradient accumulation will impact performance.



	Gradient Checkpointing

Gradient checkpointing is a time-for-space method that compresses the model by reducing the number of saved activations, however, the unstored activations must be recomputed when calculating the gradient. The corresponding functionality has been implemented in the torch.utils.checkpoint package. The implementation can be briefly concluded as that, in the forward phase, the forward function passed to the checkpoint runs in torch.no_grad mode and saves only the input and the output of the forward function. Then recalculates its intermediate activations in the backward phase.



	Large Model Training Techniques

Recent research has shown that training a large model would be helpful to improve performance, but training a model at such a scale requires huge resources, and it is hard to store the entire model in the memory of a single graphics card. Therefore large model training techniques, typically such as DeepSpeed ZeRO [https://www.deepspeed.ai/tutorials/zero/#zero-overview] and the Fully Shared Data Parallel (FSDP [https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/]) technique introduced in FairScale are introduced. These techniques allow slicing the parameters, gradients, and optimizer states among the parallel processes, while still maintaining the simplicity of the data parallelism.





MMEngine now supports gradient accumulation and large model training FSDP techniques, and the usages are described as follows.


Gradient Accumulation

The configuration can be written in this way:

optim_wrapper_cfg = dict(
    type='OptimWrapper',
    optimizer=dict(type='SGD', lr=0.001, momentum=0.9),
    # update every four times
    accumulative_counts=4)





The full example working with Runner is as follows.

import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from mmengine.runner import Runner
from mmengine.model import BaseModel

train_dataset = [(torch.ones(1, 1), torch.ones(1, 1))] * 50
train_dataloader = DataLoader(train_dataset, batch_size=2)


class ToyModel(BaseModel):
    def __init__(self) -> None:
        super().__init__()
        self.linear = nn.Linear(1, 1)

    def forward(self, img, label, mode):
        feat = self.linear(img)
        loss1 = (feat - label).pow(2)
        loss2 = (feat - label).abs()
        return dict(loss1=loss1, loss2=loss2)


runner = Runner(
    model=ToyModel(),
    work_dir='tmp_dir',
    train_dataloader=train_dataloader,
    train_cfg=dict(by_epoch=True, max_epochs=1),
    optim_wrapper=dict(optimizer=dict(type='SGD', lr=0.01),
                       accumulative_counts=4)
)
runner.train()







Large Model Training

FSDP is officially supported from PyTorch 1.11. The config can be written in this way:

# located in cfg file
model_wrapper_cfg=dict(type='MMFullyShardedDataParallel', cpu_offload=True)





The full example working with Runner is as follows.

import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from mmengine.runner import Runner
from mmengine.model import BaseModel

train_dataset = [(torch.ones(1, 1), torch.ones(1, 1))] * 50
train_dataloader = DataLoader(train_dataset, batch_size=2)


class ToyModel(BaseModel):
    def __init__(self) -> None:
        super().__init__()
        self.linear = nn.Linear(1, 1)

    def forward(self, img, label, mode):
        feat = self.linear(img)
        loss1 = (feat - label).pow(2)
        loss2 = (feat - label).abs()
        return dict(loss1=loss1, loss2=loss2)


runner = Runner(
    model=ToyModel(),
    work_dir='tmp_dir',
    train_dataloader=train_dataloader,
    train_cfg=dict(by_epoch=True, max_epochs=1),
    optim_wrapper=dict(optimizer=dict(type='SGD', lr=0.01)),
    cfg=dict(model_wrapper_cfg=dict(type='MMFullyShardedDataParallel', cpu_offload=True))
)
runner.train()





Please be noted that FSDP works only in distributed training environments.





            

          

      

      

    

  

    
      
          
            
  
How to Set Random Seed

As described in PyTorch REPRODUCIBILITY [https://pytorch.org/docs/stable/notes/randomness.html], there are 2 factors affecting the reproducibility of an experiment, namely random number and nondeterministic algorithms.

MMEngine provides the functionality to set the random number and select a deterministic algorithm. Users can simply set the randomness argument of the Runner. The argument is eventually consumed in set_random_seed and it has the following three fields:


	seed (int): The random seed. If this argument is not set, a random number will be used.


	diff_rank_seed (bool): Whether to set different seeds for different processes by adding the rank (process index) to the seed.


	deterministic (bool): Whether to set deterministic options for the CUDNN backend.




Let’s take the Get Started in 15 Minutes as an example to demonstrate how to set randomness in MMEngine.

runner = Runner(
    model=MMResNet50(),
    work_dir='./work_dir',
    train_dataloader=train_dataloader,
    optim_wrapper=dict(optimizer=dict(type=SGD, lr=0.001, momentum=0.9)),
    train_cfg=dict(by_epoch=True, max_epochs=5, val_interval=1),
    val_dataloader=val_dataloader,
    val_cfg=dict(),
    val_evaluator=dict(type=Accuracy),
    # adding randomness setting
    randomness=dict(seed=0),
)
runner.train()





However, there may still be some differences between any two experiments, even with the random number set and the deterministic algorithms chosen. The core reason is that the atomic operations in CUDA are unordered and random during parallel training.

The CUDA implementation of some operators sometimes inevitably performs atomic operations such as adding, subtracting, multiplying, and dividing the same memory address multiple times in different CUDA kernels. In particular, during the backward process, the use of atomicAdd is very common. These atomic operations are unordered and random when computed. Therefore, when performing atomic operations at the same memory address multiple times, let’s say adding multiple gradients at the same address, the order in which they are performed is uncertain, and even if each number is the same, the order in which the numbers are added will be different.

The randomness of the summing order leads to another problem, that is, since the summed values are generally floating point numbers that have the problem of precision loss, there will be a slight difference in the final result.

Therefore, by setting random seeds and deterministic to True, we can make sure that the initialization weights and even the forward outputs of the model are identical for each experiment, and the loss values are also identical. However, there may be subtle differences after one back-propagation, and the final performance of the trained models will be slightly different.




            

          

      

      

    

  

    
      
          
            
  
Debug Tricks


Set the Dataset’s length

During the process of debugging code, sometimes it is necessary to train for several epochs, such as debugging the validation process or checking whether the checkpoint saving meets expectations. However, if the dataset is too large, it may take a long time to complete one epoch, in which case the length of the dataset can be set. Note that only datasets inherited from BaseDataset support this feature, and the usage of BaseDataset can be found in the BaseDataset.

Take MMClassification as an example (Refer to the documentation [https://mmclassification.readthedocs.io/en/dev-1.x/get_started.html] for installing MMClassification).

Launch training

python tools/train.py configs/resnet/resnet18_8xb16_cifar10.py





Here is part of the training log, where 3125 represents the number of iterations to be performed.

02/20 14:43:11 - mmengine - INFO - Epoch(train)   [1][ 100/3125]  lr: 1.0000e-01  eta: 6:12:01  time: 0.0149  data_time: 0.0003  memory: 214  loss: 2.0611
02/20 14:43:13 - mmengine - INFO - Epoch(train)   [1][ 200/3125]  lr: 1.0000e-01  eta: 4:23:08  time: 0.0154  data_time: 0.0003  memory: 214  loss: 2.0963
02/20 14:43:14 - mmengine - INFO - Epoch(train)   [1][ 300/3125]  lr: 1.0000e-01  eta: 3:46:27  time: 0.0146  data_time: 0.0003  memory: 214  loss: 1.9858





Turn off the training and set indices as 5000 in the dataset field in configs/base/datasets/cifar10_bs16.py [https://github.com/open-mmlab/mmclassification/blob/dev-1.x/configs/_base_/datasets/cifar10_bs16.py].

train_dataloader = dict(
    batch_size=16,
    num_workers=2,
    dataset=dict(
        type=dataset_type,
        data_prefix='data/cifar10',
        test_mode=False,
        indices=5000,  # set indices=5000，represent every epoch only iterator 5000 samples
        pipeline=train_pipeline),
    sampler=dict(type='DefaultSampler', shuffle=True),
)





Launch training again

python tools/train.py configs/resnet/resnet18_8xb16_cifar10.py





As we can see, the number of iterations has changed to 313. Compared to before, this can complete an epoch faster.

02/20 14:44:58 - mmengine - INFO - Epoch(train)   [1][100/313]  lr: 1.0000e-01  eta: 0:31:09  time: 0.0154  data_time: 0.0004  memory: 214  loss: 2.1852
02/20 14:44:59 - mmengine - INFO - Epoch(train)   [1][200/313]  lr: 1.0000e-01  eta: 0:23:18  time: 0.0143  data_time: 0.0002  memory: 214  loss: 2.0424
02/20 14:45:01 - mmengine - INFO - Epoch(train)   [1][300/313]  lr: 1.0000e-01  eta: 0:20:39  time: 0.0143  data_time: 0.0003  memory: 214  loss: 1.814









            

          

      

      

    

  

    
      
          
            
  
Calculate the FLOPs and Parameters of Model


	Define a Model

import torch.nn.functional as F
import torchvision
from mmengine.model import BaseModel

class MMResNet50(BaseModel):
    def __init__(self):
        super().__init__()
        self.resnet = torchvision.models.resnet50()

    def forward(self, imgs, labels=None, mode='tensor'):
        x = self.resnet(imgs)
        if mode == 'loss':
            return {'loss': F.cross_entropy(x, labels)}
        elif mode == 'predict':
            return x, labels
        elif mode == 'tensor':
            return x







	Calculate the FLOPs and Parameters

from mmengine.analysis import get_model_complexity_info

input_shape = (3, 224, 224)
model = MMResNet50()
analysis_results = get_model_complexity_info(model, input_shape)










	Show in table form

print(analysis_results['out_table'])






Click to expand
+------------------------+----------------------+------------+--------------+
| module                 | #parameters or shape | #flops     | #activations |
+------------------------+----------------------+------------+--------------+
| resnet                 | 25.557M              | 4.145G     | 11.115M      |
|  conv1                 |  9.408K              |  0.118G    |  0.803M      |
|   conv1.weight         |   (64, 3, 7, 7)      |            |              |
|  bn1                   |  0.128K              |  4.014M    |  0           |
|   bn1.weight           |   (64,)              |            |              |
|   bn1.bias             |   (64,)              |            |              |
|  layer1                |  0.216M              |  0.69G     |  4.415M      |
|   layer1.0             |   75.008K            |   0.241G   |   2.007M     |
|    layer1.0.conv1      |    4.096K            |    12.845M |    0.201M    |
|    layer1.0.bn1        |    0.128K            |    1.004M  |    0         |
|    layer1.0.conv2      |    36.864K           |    0.116G  |    0.201M    |
|    layer1.0.bn2        |    0.128K            |    1.004M  |    0         |
|    layer1.0.conv3      |    16.384K           |    51.38M  |    0.803M    |
|    layer1.0.bn3        |    0.512K            |    4.014M  |    0         |
|    layer1.0.downsample |    16.896K           |    55.394M |    0.803M    |
|   layer1.1             |   70.4K              |   0.224G   |   1.204M     |
|    layer1.1.conv1      |    16.384K           |    51.38M  |    0.201M    |
|    layer1.1.bn1        |    0.128K            |    1.004M  |    0         |
|    layer1.1.conv2      |    36.864K           |    0.116G  |    0.201M    |
|    layer1.1.bn2        |    0.128K            |    1.004M  |    0         |
|    layer1.1.conv3      |    16.384K           |    51.38M  |    0.803M    |
|    layer1.1.bn3        |    0.512K            |    4.014M  |    0         |
|   layer1.2             |   70.4K              |   0.224G   |   1.204M     |
|    layer1.2.conv1      |    16.384K           |    51.38M  |    0.201M    |
|    layer1.2.bn1        |    0.128K            |    1.004M  |    0         |
|    layer1.2.conv2      |    36.864K           |    0.116G  |    0.201M    |
|    layer1.2.bn2        |    0.128K            |    1.004M  |    0         |
|    layer1.2.conv3      |    16.384K           |    51.38M  |    0.803M    |
|    layer1.2.bn3        |    0.512K            |    4.014M  |    0         |
|  layer2                |  1.22M               |  1.043G    |  3.111M      |
|   layer2.0             |   0.379M             |   0.379G   |   1.305M     |
|    layer2.0.conv1      |    32.768K           |    0.103G  |    0.401M    |
|    layer2.0.bn1        |    0.256K            |    2.007M  |    0         |
|    layer2.0.conv2      |    0.147M            |    0.116G  |    0.1M      |
|    layer2.0.bn2        |    0.256K            |    0.502M  |    0         |
|    layer2.0.conv3      |    65.536K           |    51.38M  |    0.401M    |
|    layer2.0.bn3        |    1.024K            |    2.007M  |    0         |
|    layer2.0.downsample |    0.132M            |    0.105G  |    0.401M    |
|   layer2.1             |   0.28M              |   0.221G   |   0.602M     |
|    layer2.1.conv1      |    65.536K           |    51.38M  |    0.1M      |
|    layer2.1.bn1        |    0.256K            |    0.502M  |    0         |
|    layer2.1.conv2      |    0.147M            |    0.116G  |    0.1M      |
|    layer2.1.bn2        |    0.256K            |    0.502M  |    0         |
|    layer2.1.conv3      |    65.536K           |    51.38M  |    0.401M    |
|    layer2.1.bn3        |    1.024K            |    2.007M  |    0         |
|   layer2.2             |   0.28M              |   0.221G   |   0.602M     |
|    layer2.2.conv1      |    65.536K           |    51.38M  |    0.1M      |
|    layer2.2.bn1        |    0.256K            |    0.502M  |    0         |
|    layer2.2.conv2      |    0.147M            |    0.116G  |    0.1M      |
|    layer2.2.bn2        |    0.256K            |    0.502M  |    0         |
|    layer2.2.conv3      |    65.536K           |    51.38M  |    0.401M    |
|    layer2.2.bn3        |    1.024K            |    2.007M  |    0         |
|   layer2.3             |   0.28M              |   0.221G   |   0.602M     |
|    layer2.3.conv1      |    65.536K           |    51.38M  |    0.1M      |
|    layer2.3.bn1        |    0.256K            |    0.502M  |    0         |
|    layer2.3.conv2      |    0.147M            |    0.116G  |    0.1M      |
|    layer2.3.bn2        |    0.256K            |    0.502M  |    0         |
|    layer2.3.conv3      |    65.536K           |    51.38M  |    0.401M    |
|    layer2.3.bn3        |    1.024K            |    2.007M  |    0         |
|  layer3                |  7.098M              |  1.475G    |  2.158M      |
|   layer3.0             |   1.512M             |   0.376G   |   0.652M     |
|    layer3.0.conv1      |    0.131M            |    0.103G  |    0.201M    |
|    layer3.0.bn1        |    0.512K            |    1.004M  |    0         |
|    layer3.0.conv2      |    0.59M             |    0.116G  |    50.176K   |
|    layer3.0.bn2        |    0.512K            |    0.251M  |    0         |
|    layer3.0.conv3      |    0.262M            |    51.38M  |    0.201M    |
|    layer3.0.bn3        |    2.048K            |    1.004M  |    0         |
|    layer3.0.downsample |    0.526M            |    0.104G  |    0.201M    |
|   layer3.1             |   1.117M             |   0.22G    |   0.301M     |
|    layer3.1.conv1      |    0.262M            |    51.38M  |    50.176K   |
|    layer3.1.bn1        |    0.512K            |    0.251M  |    0         |
|    layer3.1.conv2      |    0.59M             |    0.116G  |    50.176K   |
|    layer3.1.bn2        |    0.512K            |    0.251M  |    0         |
|    layer3.1.conv3      |    0.262M            |    51.38M  |    0.201M    |
|    layer3.1.bn3        |    2.048K            |    1.004M  |    0         |
|   layer3.2             |   1.117M             |   0.22G    |   0.301M     |
|    layer3.2.conv1      |    0.262M            |    51.38M  |    50.176K   |
|    layer3.2.bn1        |    0.512K            |    0.251M  |    0         |
|    layer3.2.conv2      |    0.59M             |    0.116G  |    50.176K   |
|    layer3.2.bn2        |    0.512K            |    0.251M  |    0         |
|    layer3.2.conv3      |    0.262M            |    51.38M  |    0.201M    |
|    layer3.2.bn3        |    2.048K            |    1.004M  |    0         |
|   layer3.3             |   1.117M             |   0.22G    |   0.301M     |
|    layer3.3.conv1      |    0.262M            |    51.38M  |    50.176K   |
|    layer3.3.bn1        |    0.512K            |    0.251M  |    0         |
|    layer3.3.conv2      |    0.59M             |    0.116G  |    50.176K   |
|    layer3.3.bn2        |    0.512K            |    0.251M  |    0         |
|    layer3.3.conv3      |    0.262M            |    51.38M  |    0.201M    |
|    layer3.3.bn3        |    2.048K            |    1.004M  |    0         |
|   layer3.4             |   1.117M             |   0.22G    |   0.301M     |
|    layer3.4.conv1      |    0.262M            |    51.38M  |    50.176K   |
|    layer3.4.bn1        |    0.512K            |    0.251M  |    0         |
|    layer3.4.conv2      |    0.59M             |    0.116G  |    50.176K   |
|    layer3.4.bn2        |    0.512K            |    0.251M  |    0         |
|    layer3.4.conv3      |    0.262M            |    51.38M  |    0.201M    |
|    layer3.4.bn3        |    2.048K            |    1.004M  |    0         |
|   layer3.5             |   1.117M             |   0.22G    |   0.301M     |
|    layer3.5.conv1      |    0.262M            |    51.38M  |    50.176K   |
|    layer3.5.bn1        |    0.512K            |    0.251M  |    0         |
|    layer3.5.conv2      |    0.59M             |    0.116G  |    50.176K   |
|    layer3.5.bn2        |    0.512K            |    0.251M  |    0         |
|    layer3.5.conv3      |    0.262M            |    51.38M  |    0.201M    |
|    layer3.5.bn3        |    2.048K            |    1.004M  |    0         |
|  layer4                |  14.965M             |  0.812G    |  0.627M      |
|   layer4.0             |   6.04M              |   0.374G   |   0.326M     |
|    layer4.0.conv1      |    0.524M            |    0.103G  |    0.1M      |
|    layer4.0.bn1        |    1.024K            |    0.502M  |    0         |
|    layer4.0.conv2      |    2.359M            |    0.116G  |    25.088K   |
|    layer4.0.bn2        |    1.024K            |    0.125M  |    0         |
|    layer4.0.conv3      |    1.049M            |    51.38M  |    0.1M      |
|    layer4.0.bn3        |    4.096K            |    0.502M  |    0         |
|    layer4.0.downsample |    2.101M            |    0.103G  |    0.1M      |
|   layer4.1             |   4.463M             |   0.219G   |   0.151M     |
|    layer4.1.conv1      |    1.049M            |    51.38M  |    25.088K   |
|    layer4.1.bn1        |    1.024K            |    0.125M  |    0         |
|    layer4.1.conv2      |    2.359M            |    0.116G  |    25.088K   |
|    layer4.1.bn2        |    1.024K            |    0.125M  |    0         |
|    layer4.1.conv3      |    1.049M            |    51.38M  |    0.1M      |
|    layer4.1.bn3        |    4.096K            |    0.502M  |    0         |
|   layer4.2             |   4.463M             |   0.219G   |   0.151M     |
|    layer4.2.conv1      |    1.049M            |    51.38M  |    25.088K   |
|    layer4.2.bn1        |    1.024K            |    0.125M  |    0         |
|    layer4.2.conv2      |    2.359M            |    0.116G  |    25.088K   |
|    layer4.2.bn2        |    1.024K            |    0.125M  |    0         |
|    layer4.2.conv3      |    1.049M            |    51.38M  |    0.1M      |
|    layer4.2.bn3        |    4.096K            |    0.502M  |    0         |
|  fc                    |  2.049M              |  2.048M    |  1K          |
|   fc.weight            |   (1000, 2048)       |            |              |
|   fc.bias              |   (1000,)            |            |              |
|  avgpool               |                      |  0.1M      |  0           |
+------------------------+----------------------+------------+--------------+








	Show in model structure

print(analysis_results['out_arch'])






Click to expand
MMResNet50(
#params: 25.56M, #flops: 4.14G, #acts: 11.11M
(data_preprocessor): BaseDataPreprocessor(#params: 0, #flops: N/A, #acts: N/A)
(resnet): ResNet(
    #params: 25.56M, #flops: 4.14G, #acts: 11.11M
    (conv1): Conv2d(
    3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False
    #params: 9.41K, #flops: 0.12G, #acts: 0.8M
    )
    (bn1): BatchNorm2d(
    64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
    #params: 0.13K, #flops: 4.01M, #acts: 0
    )
    (relu): ReLU(inplace=True)
    (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
    (layer1): Sequential(
    #params: 0.22M, #flops: 0.69G, #acts: 4.42M
    (0): Bottleneck(
        #params: 75.01K, #flops: 0.24G, #acts: 2.01M
        (conv1): Conv2d(
        64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False
        #params: 4.1K, #flops: 12.85M, #acts: 0.2M
        )
        (bn1): BatchNorm2d(
        64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
        #params: 0.13K, #flops: 1M, #acts: 0
        )
        (conv2): Conv2d(
        64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
        #params: 36.86K, #flops: 0.12G, #acts: 0.2M
        )
        (bn2): BatchNorm2d(
        64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
        #params: 0.13K, #flops: 1M, #acts: 0
        )
        (conv3): Conv2d(
        64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
        #params: 16.38K, #flops: 51.38M, #acts: 0.8M
        )
        (bn3): BatchNorm2d(
        256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
        #params: 0.51K, #flops: 4.01M, #acts: 0
        )
        (relu): ReLU(inplace=True)
        (downsample): Sequential(
        #params: 16.9K, #flops: 55.39M, #acts: 0.8M
        (0): Conv2d(
            64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
            #params: 16.38K, #flops: 51.38M, #acts: 0.8M
        )
        (1): BatchNorm2d(
            256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
            #params: 0.51K, #flops: 4.01M, #acts: 0
        )
        )
    )
    (1): Bottleneck(
        #params: 70.4K, #flops: 0.22G, #acts: 1.2M
        (conv1): Conv2d(
        256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False
        #params: 16.38K, #flops: 51.38M, #acts: 0.2M
        )
        (bn1): BatchNorm2d(
        64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
        #params: 0.13K, #flops: 1M, #acts: 0
        )
        (conv2): Conv2d(
        64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
        #params: 36.86K, #flops: 0.12G, #acts: 0.2M
        )
        (bn2): BatchNorm2d(
        64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
        #params: 0.13K, #flops: 1M, #acts: 0
        )
        (conv3): Conv2d(
        64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
        #params: 16.38K, #flops: 51.38M, #acts: 0.8M
        )
        (bn3): BatchNorm2d(
        256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
        #params: 0.51K, #flops: 4.01M, #acts: 0
        )
        (relu): ReLU(inplace=True)
    )
    (2): Bottleneck(
        #params: 70.4K, #flops: 0.22G, #acts: 1.2M
        (conv1): Conv2d(
        256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False
        #params: 16.38K, #flops: 51.38M, #acts: 0.2M
        )
        (bn1): BatchNorm2d(
        64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
        #params: 0.13K, #flops: 1M, #acts: 0
        )
        (conv2): Conv2d(
        64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
        #params: 36.86K, #flops: 0.12G, #acts: 0.2M
        )
        (bn2): BatchNorm2d(
        64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
        #params: 0.13K, #flops: 1M, #acts: 0
        )
        (conv3): Conv2d(
        64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
        #params: 16.38K, #flops: 51.38M, #acts: 0.8M
        )
        (bn3): BatchNorm2d(
        256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
        #params: 0.51K, #flops: 4.01M, #acts: 0
        )
        (relu): ReLU(inplace=True)
    )
    )
    (layer2): Sequential(
    #params: 1.22M, #flops: 1.04G, #acts: 3.11M
    (0): Bottleneck(
        #params: 0.38M, #flops: 0.38G, #acts: 1.3M
        (conv1): Conv2d(
        256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False
        #params: 32.77K, #flops: 0.1G, #acts: 0.4M
        )
        (bn1): BatchNorm2d(
        128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
        #params: 0.26K, #flops: 2.01M, #acts: 0
        )
        (conv2): Conv2d(
        128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False
        #params: 0.15M, #flops: 0.12G, #acts: 0.1M
        )
        (bn2): BatchNorm2d(
        128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
        #params: 0.26K, #flops: 0.5M, #acts: 0
        )
        (conv3): Conv2d(
        128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
        #params: 65.54K, #flops: 51.38M, #acts: 0.4M
        )
        (bn3): BatchNorm2d(
        512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
        #params: 1.02K, #flops: 2.01M, #acts: 0
        )
        (relu): ReLU(inplace=True)
        (downsample): Sequential(
        #params: 0.13M, #flops: 0.1G, #acts: 0.4M
        (0): Conv2d(
            256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False
            #params: 0.13M, #flops: 0.1G, #acts: 0.4M
        )
        (1): BatchNorm2d(
            512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
            #params: 1.02K, #flops: 2.01M, #acts: 0
        )
        )
    )
    (1): Bottleneck(
        #params: 0.28M, #flops: 0.22G, #acts: 0.6M
        (conv1): Conv2d(
        512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False
        #params: 65.54K, #flops: 51.38M, #acts: 0.1M
        )
        (bn1): BatchNorm2d(
        128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
        #params: 0.26K, #flops: 0.5M, #acts: 0
        )
        (conv2): Conv2d(
        128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
        #params: 0.15M, #flops: 0.12G, #acts: 0.1M
        )
        (bn2): BatchNorm2d(
        128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
        #params: 0.26K, #flops: 0.5M, #acts: 0
        )
        (conv3): Conv2d(
        128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
        #params: 65.54K, #flops: 51.38M, #acts: 0.4M
        )
        (bn3): BatchNorm2d(
        512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
        #params: 1.02K, #flops: 2.01M, #acts: 0
        )
        (relu): ReLU(inplace=True)
    )
    (2): Bottleneck(
        #params: 0.28M, #flops: 0.22G, #acts: 0.6M
        (conv1): Conv2d(
        512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False
        #params: 65.54K, #flops: 51.38M, #acts: 0.1M
        )
        (bn1): BatchNorm2d(
        128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
        #params: 0.26K, #flops: 0.5M, #acts: 0
        )
        (conv2): Conv2d(
        128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
        #params: 0.15M, #flops: 0.12G, #acts: 0.1M
        )
        (bn2): BatchNorm2d(
        128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
        #params: 0.26K, #flops: 0.5M, #acts: 0
        )
        (conv3): Conv2d(
        128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
        #params: 65.54K, #flops: 51.38M, #acts: 0.4M
        )
        (bn3): BatchNorm2d(
        512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
        #params: 1.02K, #flops: 2.01M, #acts: 0
        )
        (relu): ReLU(inplace=True)
    )
    (3): Bottleneck(
        #params: 0.28M, #flops: 0.22G, #acts: 0.6M
        (conv1): Conv2d(
        512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False
        #params: 65.54K, #flops: 51.38M, #acts: 0.1M
        )
        (bn1): BatchNorm2d(
        128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
        #params: 0.26K, #flops: 0.5M, #acts: 0
        )
        (conv2): Conv2d(
        128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
        #params: 0.15M, #flops: 0.12G, #acts: 0.1M
        )
        (bn2): BatchNorm2d(
        128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
        #params: 0.26K, #flops: 0.5M, #acts: 0
        )
        (conv3): Conv2d(
        128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
        #params: 65.54K, #flops: 51.38M, #acts: 0.4M
        )
        (bn3): BatchNorm2d(
        512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
        #params: 1.02K, #flops: 2.01M, #acts: 0
        )
        (relu): ReLU(inplace=True)
    )
    )
    (layer3): Sequential(
    #params: 7.1M, #flops: 1.48G, #acts: 2.16M
    (0): Bottleneck(
        #params: 1.51M, #flops: 0.38G, #acts: 0.65M
        (conv1): Conv2d(
        512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
        #params: 0.13M, #flops: 0.1G, #acts: 0.2M
        )
        (bn1): BatchNorm2d(
        256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
        #params: 0.51K, #flops: 1M, #acts: 0
        )
        (conv2): Conv2d(
        256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False
        #params: 0.59M, #flops: 0.12G, #acts: 50.18K
        )
        (bn2): BatchNorm2d(
        256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
        #params: 0.51K, #flops: 0.25M, #acts: 0
        )
        (conv3): Conv2d(
        256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
        #params: 0.26M, #flops: 51.38M, #acts: 0.2M
        )
        (bn3): BatchNorm2d(
        1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
        #params: 2.05K, #flops: 1M, #acts: 0
        )
        (relu): ReLU(inplace=True)
        (downsample): Sequential(
        #params: 0.53M, #flops: 0.1G, #acts: 0.2M
        (0): Conv2d(
            512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False
            #params: 0.52M, #flops: 0.1G, #acts: 0.2M
        )
        (1): BatchNorm2d(
            1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
            #params: 2.05K, #flops: 1M, #acts: 0
        )
        )
    )
    (1): Bottleneck(
        #params: 1.12M, #flops: 0.22G, #acts: 0.3M
        (conv1): Conv2d(
        1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
        #params: 0.26M, #flops: 51.38M, #acts: 50.18K
        )
        (bn1): BatchNorm2d(
        256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
        #params: 0.51K, #flops: 0.25M, #acts: 0
        )
        (conv2): Conv2d(
        256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
        #params: 0.59M, #flops: 0.12G, #acts: 50.18K
        )
        (bn2): BatchNorm2d(
        256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
        #params: 0.51K, #flops: 0.25M, #acts: 0
        )
        (conv3): Conv2d(
        256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
        #params: 0.26M, #flops: 51.38M, #acts: 0.2M
        )
        (bn3): BatchNorm2d(
        1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
        #params: 2.05K, #flops: 1M, #acts: 0
        )
        (relu): ReLU(inplace=True)
    )
    (2): Bottleneck(
        #params: 1.12M, #flops: 0.22G, #acts: 0.3M
        (conv1): Conv2d(
        1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
        #params: 0.26M, #flops: 51.38M, #acts: 50.18K
        )
        (bn1): BatchNorm2d(
        256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
        #params: 0.51K, #flops: 0.25M, #acts: 0
        )
        (conv2): Conv2d(
        256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
        #params: 0.59M, #flops: 0.12G, #acts: 50.18K
        )
        (bn2): BatchNorm2d(
        256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
        #params: 0.51K, #flops: 0.25M, #acts: 0
        )
        (conv3): Conv2d(
        256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
        #params: 0.26M, #flops: 51.38M, #acts: 0.2M
        )
        (bn3): BatchNorm2d(
        1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
        #params: 2.05K, #flops: 1M, #acts: 0
        )
        (relu): ReLU(inplace=True)
    )
    (3): Bottleneck(
        #params: 1.12M, #flops: 0.22G, #acts: 0.3M
        (conv1): Conv2d(
        1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
        #params: 0.26M, #flops: 51.38M, #acts: 50.18K
        )
        (bn1): BatchNorm2d(
        256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
        #params: 0.51K, #flops: 0.25M, #acts: 0
        )
        (conv2): Conv2d(
        256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
        #params: 0.59M, #flops: 0.12G, #acts: 50.18K
        )
        (bn2): BatchNorm2d(
        256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
        #params: 0.51K, #flops: 0.25M, #acts: 0
        )
        (conv3): Conv2d(
        256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
        #params: 0.26M, #flops: 51.38M, #acts: 0.2M
        )
        (bn3): BatchNorm2d(
        1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
        #params: 2.05K, #flops: 1M, #acts: 0
        )
        (relu): ReLU(inplace=True)
    )
    (4): Bottleneck(
        #params: 1.12M, #flops: 0.22G, #acts: 0.3M
        (conv1): Conv2d(
        1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
        #params: 0.26M, #flops: 51.38M, #acts: 50.18K
        )
        (bn1): BatchNorm2d(
        256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
        #params: 0.51K, #flops: 0.25M, #acts: 0
        )
        (conv2): Conv2d(
        256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
        #params: 0.59M, #flops: 0.12G, #acts: 50.18K
        )
        (bn2): BatchNorm2d(
        256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
        #params: 0.51K, #flops: 0.25M, #acts: 0
        )
        (conv3): Conv2d(
        256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
        #params: 0.26M, #flops: 51.38M, #acts: 0.2M
        )
        (bn3): BatchNorm2d(
        1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
        #params: 2.05K, #flops: 1M, #acts: 0
        )
        (relu): ReLU(inplace=True)
    )
    (5): Bottleneck(
        #params: 1.12M, #flops: 0.22G, #acts: 0.3M
        (conv1): Conv2d(
        1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
        #params: 0.26M, #flops: 51.38M, #acts: 50.18K
        )
        (bn1): BatchNorm2d(
        256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
        #params: 0.51K, #flops: 0.25M, #acts: 0
        )
        (conv2): Conv2d(
        256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
        #params: 0.59M, #flops: 0.12G, #acts: 50.18K
        )
        (bn2): BatchNorm2d(
        256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
        #params: 0.51K, #flops: 0.25M, #acts: 0
        )
        (conv3): Conv2d(
        256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
        #params: 0.26M, #flops: 51.38M, #acts: 0.2M
        )
        (bn3): BatchNorm2d(
        1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
        #params: 2.05K, #flops: 1M, #acts: 0
        )
        (relu): ReLU(inplace=True)
    )
    )
    (layer4): Sequential(
    #params: 14.96M, #flops: 0.81G, #acts: 0.63M
    (0): Bottleneck(
        #params: 6.04M, #flops: 0.37G, #acts: 0.33M
        (conv1): Conv2d(
        1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
        #params: 0.52M, #flops: 0.1G, #acts: 0.1M
        )
        (bn1): BatchNorm2d(
        512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
        #params: 1.02K, #flops: 0.5M, #acts: 0
        )
        (conv2): Conv2d(
        512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False
        #params: 2.36M, #flops: 0.12G, #acts: 25.09K
        )
        (bn2): BatchNorm2d(
        512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
        #params: 1.02K, #flops: 0.13M, #acts: 0
        )
        (conv3): Conv2d(
        512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
        #params: 1.05M, #flops: 51.38M, #acts: 0.1M
        )
        (bn3): BatchNorm2d(
        2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
        #params: 4.1K, #flops: 0.5M, #acts: 0
        )
        (relu): ReLU(inplace=True)
        (downsample): Sequential(
        #params: 2.1M, #flops: 0.1G, #acts: 0.1M
        (0): Conv2d(
            1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False
            #params: 2.1M, #flops: 0.1G, #acts: 0.1M
        )
        (1): BatchNorm2d(
            2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
            #params: 4.1K, #flops: 0.5M, #acts: 0
        )
        )
    )
    (1): Bottleneck(
        #params: 4.46M, #flops: 0.22G, #acts: 0.15M
        (conv1): Conv2d(
        2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
        #params: 1.05M, #flops: 51.38M, #acts: 25.09K
        )
        (bn1): BatchNorm2d(
        512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
        #params: 1.02K, #flops: 0.13M, #acts: 0
        )
        (conv2): Conv2d(
        512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
        #params: 2.36M, #flops: 0.12G, #acts: 25.09K
        )
        (bn2): BatchNorm2d(
        512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
        #params: 1.02K, #flops: 0.13M, #acts: 0
        )
        (conv3): Conv2d(
        512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
        #params: 1.05M, #flops: 51.38M, #acts: 0.1M
        )
        (bn3): BatchNorm2d(
        2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
        #params: 4.1K, #flops: 0.5M, #acts: 0
        )
        (relu): ReLU(inplace=True)
    )
    (2): Bottleneck(
        #params: 4.46M, #flops: 0.22G, #acts: 0.15M
        (conv1): Conv2d(
        2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
        #params: 1.05M, #flops: 51.38M, #acts: 25.09K
        )
        (bn1): BatchNorm2d(
        512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
        #params: 1.02K, #flops: 0.13M, #acts: 0
        )
        (conv2): Conv2d(
        512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
        #params: 2.36M, #flops: 0.12G, #acts: 25.09K
        )
        (bn2): BatchNorm2d(
        512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
        #params: 1.02K, #flops: 0.13M, #acts: 0
        )
        (conv3): Conv2d(
        512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
        #params: 1.05M, #flops: 51.38M, #acts: 0.1M
        )
        (bn3): BatchNorm2d(
        2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
        #params: 4.1K, #flops: 0.5M, #acts: 0
        )
        (relu): ReLU(inplace=True)
    )
    )
    (avgpool): AdaptiveAvgPool2d(
    output_size=(1, 1)
    #params: 0, #flops: 0.1M, #acts: 0
    )
    (fc): Linear(
    in_features=2048, out_features=1000, bias=True
    #params: 2.05M, #flops: 2.05M, #acts: 1K
    )
)
)








	Show FLOPs as a string

print('Model Flops:{}'.format(analysis_results['flops_str']))
# Model Flops:4.145G







	Show Parameters as a string

print('Model Parameters:{}'.format(analysis_results['params_str']))
# Model Parameters:25.557M









For the definition of FLOPs and Parameters of model and more usage, please refer to Model Complexity Analysis




            

          

      

      

    

  

    
      
          
            
  
Setting the Frequency of Logging, Checkpoint Saving, and Validation

MMEngine supports two training modes, EpochBased based on epochs and IterBased based on the number of iterations. Both of these modes are used in downstream algorithm libraries such as MMDetection [https://github.com/open-mmlab/mmdetection], which uses the EpochBased mode by default, and MMSegmentation [https://github.com/open-mmlab/mmsegmentation], which uses the IterBased mode by default.

In different training modes, the semantics of the interval in MMEngine will be different. In EpochBased mode, the interval is in terms of epochs, while in IterBased mode, the interval is in terms of iterations.


Setting the Interval for Training and Validation

To customize the interval for training and validation, set the val_interval parameter in the initialization parameter train_cfg of Runner.


	EpochBased




In EpochBased mode, the default value of val_interval is 1, which means to validate once after training an epoch.

runner = Runner(
    model=MMResNet50(),
    work_dir='./work_dir',
    train_dataloader=train_dataloader,
    optim_wrapper=dict(optimizer=dict(type=SGD, lr=0.001, momentum=0.9)),
    train_cfg=dict(by_epoch=True, max_epochs=5, val_interval=1),
    val_dataloader=val_dataloader,
    val_cfg=dict(),
    val_evaluator=dict(type=Accuracy),
)
runner.train()






	IterBased




In IterBased mode, the default value of val_interval is 1000, which means to validate once after training 1000 iterations.

runner = Runner(
    model=MMResNet50(),
    work_dir='./work_dir',
    train_dataloader=train_dataloader,
    optim_wrapper=dict(optimizer=dict(type=SGD, lr=0.001, momentum=0.9)),
    train_cfg=dict(by_epoch=False, max_iters=10000, val_interval=2000),
    val_dataloader=val_dataloader,
    val_cfg=dict(),
    val_evaluator=dict(type=Accuracy),
)
runner.train()







Setting the Interval for Saving Checkpoints

To customize the interval for saving checkpoints, set the interval parameter of CheckpointHook.


	EpochBased




In EpochBased mode, the default value of interval is 1, which means to save checkpoints once after training for one epoch.

# set the interval to 2, which means to save checkpoints every 2 epochs
default_hooks = dict(checkpoint=dict(type='CheckpointHook', interval=2))
runner = Runner(
    model=MMResNet50(),
    work_dir='./work_dir',
    train_dataloader=train_dataloader,
    optim_wrapper=dict(optimizer=dict(type=SGD, lr=0.001, momentum=0.9)),
    train_cfg=dict(by_epoch=True, max_epochs=5, val_interval=1),
    val_dataloader=val_dataloader,
    val_cfg=dict(),
    val_evaluator=dict(type=Accuracy),
    default_hooks=default_hooks,
)
runner.train()






	IterBased




By default, checkpoints are saved in terms of epochs. If you want to save checkpoints in terms of iterations, you need to set by_epoch=False.

# set by_epoch=False and interval=500, which means to save checkpoints every 500 iterations
default_hooks = dict(checkpoint=dict(type='CheckpointHook', by_epoch=False, interval=500))
runner = Runner(
    model=MMResNet50(),
    work_dir='./work_dir',
    train_dataloader=train_dataloader,
    optim_wrapper=dict(optimizer=dict(type=SGD, lr=0.001, momentum=0.9)),
    train_cfg=dict(by_epoch=False, max_iters=10000, val_interval=1000),
    val_dataloader=val_dataloader,
    val_cfg=dict(),
    val_evaluator=dict(type=Accuracy),
    default_hooks=default_hooks,
)
runner.train()





For more information on how to use CheckpointHook, please refer to the CheckpointHook tutorial.



Setting the Interval for Printing Logs

By default, logs are printed to the terminal once every 10 iterations. You can set the interval using the interval parameter of the LoggerHook.

# print logs every 20 iterations
default_hooks = dict(logger=dict(type='LoggerHook', interval=20))
runner = Runner(
    model=MMResNet50(),
    work_dir='./work_dir',
    train_dataloader=train_dataloader,
    optim_wrapper=dict(optimizer=dict(type=SGD, lr=0.001, momentum=0.9)),
    train_cfg=dict(by_epoch=True, max_epochs=5, val_interval=1),
    val_dataloader=val_dataloader,
    val_cfg=dict(),
    val_evaluator=dict(type=Accuracy),
    default_hooks=default_hooks,
)
runner.train()





For more information on how to use LoggerHook, please refer to the LoggerHook tutorial.





            

          

      

      

    

  

    
      
          
            
  
EpochBasedTraining to IterBasedTraining

Epoch-based training and iteration-based training are two commonly used training way in MMEngine. For example, downstream repositories like MMDetection [https://github.com/open-mmlab/mmdetection] choose to train the model by epoch and MMSegmentation [https://github.com/open-mmlab/mmsegmentation] choose to train the model by iteration.

Many modules in MMEngine default to training models by epoch, such as ParamScheduler, LoggerHook, CheckPointHook, etc. Therefore, you need to adjust the configuration of these modules if you want to train by iteration. For example, a commonly used epoch based configuration is as follows:

param_scheduler = dict(
    type='MultiStepLR',
    milestones=[6, 8]
    by_epoch=True  # by_epoch is True by default
)

default_hooks = dict(
    logger=dict(type='LoggerHook', log_metric_by_epoch=True),  # log_metric_by_epoch is True by default
    checkpoint=dict(type='CheckpointHook', interval=2, by_epoch=True),  # by_epoch is True by default
)

train_cfg = dict(
    by_epoch=True,  # set by_epoch=True or type='EpochBasedTrainLoop'
    max_epochs=10,
    val_interval=2
)

log_processor = dict(
    by_epoch=True
)  # This is the default configuration, and just set it here for comparison.

runner = Runner(
    model=ResNet18(),
    work_dir='./work_dir',
    # Assuming train_dataloader is configured with an epoch-based sampler
    train_dataloader=train_dataloader_cfg,
    optim_wrapper=dict(optimizer=dict(type='SGD', lr=0.001, momentum=0.9)),
    param_scheduler=param_scheduler
    default_hooks=default_hooks,
    log_processor=log_processor,
    train_cfg=train_cfg,
    resume=True,
)





There are four steps to convert the above configuration to iteration based training:


	Set by_epoch in train_cfg to False, and set max_iters to the total number of training iterations and val_interval to the interval between validation iterations.

train_cfg = dict(
    by_epoch=False,
    max_iters=10000,
    val_interval=2000
  )







	Set log_metric_by_epoch to False in logger and by_epoch to False in checkpoint.

default_hooks = dict(
    logger=dict(type='LoggerHook', log_metric_by_epoch=False),
    checkpoint=dict(type='CheckpointHook', by_epoch=False, interval=2000),
)







	Set by_epoch in param_scheduler to False and convert any epoch-related parameters to iteration.

param_scheduler = dict(
    type='MultiStepLR',
    milestones=[6000, 8000],
    by_epoch=False,
)





Alternatively, if you can ensure that the total number of iterations for IterBasedTraining and EpochBasedTraining is the same, simply set convert_to_iter_based to True.

param_scheduler = dict(
    type='MultiStepLR',
    milestones=[6, 8]
    convert_to_iter_based=True
)







	Set by_epoch in log_processor to False.

log_processor = dict(
    by_epoch=False
)









Take training CIFAR10 as an example:



  
    	Step
    	Training by epoch
    	Training by iteration


  	Build model
  	
import torch.nn.functional as F
import torchvision
from mmengine.model import BaseModel


class MMResNet50(BaseModel):
    def __init__(self):
        super().__init__()
        self.resnet = torchvision.models.resnet50()

    def forward(self, imgs, labels, mode):
        x = self.resnet(imgs)
        if mode == 'loss':
            return {'loss': F.cross_entropy(x, labels)}
        elif mode == 'predict':
            return x, labels
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Runner

Welcome to the tutorial of runner, the core of MMEngine’s user interface!

The runner, as an “integrator” in MMEngine, covers all aspects of the framework and shoulders the responsibility of organizing and scheduling nearly all modules. Therefore, the code logic in it has to take into account various situations, making it relatively hard to understand. But don’t worry! In this tutorial, we will leave out some messy details and have a quick overview of commonly used APIs, functionalities, and examples. Hopefully, this should provide you with a clear and easy-to-understand user interface. After reading through this tutorial, you will be able to:


	Master the common usage and configuration of the runner


	Learn the best practice - writing config files - of the runner


	Know about the basic dataflow and execution order


	Feel by yourself the advantages of using runner (perhaps)





Example codes of the runner

To build your training pipeline with a runner, there are typically two ways to get started:


	Refer to runner’s API documentation for argument-by-argument configuration


	Make your custom modifications based on some existing configurations, such as Getting started in 15 minutes and downstream repositories like MMDet [https://github.com/open-mmlab/mmdetection]




Pros and cons lie in both approaches. For the former one, beginners may be lost in a vast number of configurable arguments. For the latter one, beginners may find it hard to get a good reference, since neither an over-simplified nor an over-detailed reference is conducive to them.

We argue that the key to learning runner is using it as a memo. You should remember its most commonly used arguments and only focus on those less used when in need, since default values usually work fine. In the following, we will provide a beginner-friendly example to illustrate the most commonly used arguments of the runner, along with advanced guidelines for those less used.


A beginer-friendly example


Hint

In this tutorial, we hope you can focus more on overall architecture instead of implementation details. This “top-down” way of thinking is exactly what we advocate. Don’t worry, you will definitely have plenty of opportunities and guidance afterward to focus on modules you want to improve.




Before running the actual example below, you should first run this piece of code for the preparation of the model, dataset, and metric. However, these implementations are not important in this tutorial and you can simply look through
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset

from mmengine.model import BaseModel
from mmengine.evaluator import BaseMetric
from mmengine.registry import MODELS, DATASETS, METRICS


@MODELS.register_module()
class MyAwesomeModel(BaseModel):
    def __init__(self, layers=4, activation='relu') -> None:
        super().__init__()
        if activation == 'relu':
            act_type = nn.ReLU
        elif activation == 'silu':
            act_type = nn.SiLU
        elif activation == 'none':
            act_type = nn.Identity
        else:
            raise NotImplementedError
        sequence = [nn.Linear(2, 64), act_type()]
        for _ in range(layers-1):
            sequence.extend([nn.Linear(64, 64), act_type()])
        self.mlp = nn.Sequential(*sequence)
        self.classifier = nn.Linear(64, 2)

    def forward(self, data, labels, mode):
        x = self.mlp(data)
        x = self.classifier(x)
        if mode == 'tensor':
            return x
        elif mode == 'predict':
            return F.softmax(x, dim=1), labels
        elif mode == 'loss':
            return {'loss': F.cross_entropy(x, labels)}


@DATASETS.register_module()
class MyDataset(Dataset):
    def __init__(self, is_train, size):
        self.is_train = is_train
        if self.is_train:
            torch.manual_seed(0)
            self.labels = torch.randint(0, 2, (size,))
        else:
            torch.manual_seed(3407)
            self.labels = torch.randint(0, 2, (size,))
        r = 3 * (self.labels+1) + torch.randn(self.labels.shape)
        theta = torch.rand(self.labels.shape) * 2 * torch.pi
        self.data = torch.vstack([r*torch.cos(theta), r*torch.sin(theta)]).T

    def __getitem__(self, index):
        return self.data[index], self.labels[index]

    def __len__(self):
        return len(self.data)


@METRICS.register_module()
class Accuracy(BaseMetric):
    def __init__(self):
        super().__init__()

    def process(self, data_batch, data_samples):
        score, gt = data_samples
        self.results.append({
            'batch_size': len(gt),
            'correct': (score.argmax(dim=1) == gt).sum().cpu(),
        })

    def compute_metrics(self, results):
        total_correct = sum(r['correct'] for r in results)
        total_size = sum(r['batch_size'] for r in results)
        return dict(accuracy=100*total_correct/total_size)







Click to show a long example. Be well prepared
from torch.utils.data import DataLoader, default_collate
from torch.optim import Adam
from mmengine.runner import Runner


runner = Runner(
    # your model
    model=MyAwesomeModel(
        layers=2,
        activation='relu'),
    # work directory for saving checkpoints and logs
    work_dir='exp/my_awesome_model',

    # training data
    train_dataloader=DataLoader(
        dataset=MyDataset(
            is_train=True,
            size=10000),
        shuffle=True,
        collate_fn=default_collate,
        batch_size=64,
        pin_memory=True,
        num_workers=2),
    # training configurations
    train_cfg=dict(
        by_epoch=True,   # display in epoch number instead of iterations
        max_epochs=10,
        val_begin=2,     # start validation from the 2nd epoch
        val_interval=1), # do validation every 1 epoch

    # OptimizerWrapper, new concept in MMEngine for richer optimization options
    # Default value works fine for most cases. You may check our documentations
    # for more details, e.g. 'AmpOptimWrapper' for enabling mixed precision
    # training.
    optim_wrapper=dict(
        optimizer=dict(
            type=Adam,
            lr=0.001)),
    # ParamScheduler to adjust learning rates or momentums during training
    param_scheduler=dict(
        type='MultiStepLR',
        by_epoch=True,
        milestones=[4, 8],
        gamma=0.1),

    # validation data
    val_dataloader=DataLoader(
        dataset=MyDataset(
            is_train=False,
            size=1000),
        shuffle=False,
        collate_fn=default_collate,
        batch_size=1000,
        pin_memory=True,
        num_workers=2),
    # validation configurations, usually leave it an empty dict
    val_cfg=dict(),
    # evaluation metrics and evaluator
    val_evaluator=dict(type=Accuracy),

    # following are advanced configurations, try to default when not in need
    # hooks are advanced usage, try to default when not in need
    default_hooks=dict(
        # the most commonly used hook for modifying checkpoint saving interval
        checkpoint=dict(type='CheckpointHook', interval=1)),

    # `luancher` and `env_cfg` responsible for distributed environment
    launcher='none',
    env_cfg=dict(
        cudnn_benchmark=False,   # whether enable cudnn_benchmark
        backend='nccl',   # distributed communication backend
        mp_cfg=dict(mp_start_method='fork')),  # multiprocessing configs
    log_level='INFO',

    # load model weights from given path. None for no loading.
    load_from=None
    # resume training from the given path
    resume=False
)

# start training your model
runner.train()








Explanations on example codes

Really a long piece of code, isn’t it! However, if you read through the above example, you may have already understood the training process in general even without knowing any implementation details, thanks to the compactness and readability of runner codes (probably). This is what MMEngine expects: a structured, modular, and standardized training process that allows for more reliable reproductions and clearer comparisons.

The above example may lead you to the following confusion:


There are too many arguments!
Don’t worry. As we mentioned before, use runner as a memo. The runner covers all aspects just to ensure you won’t miss something important. You don’t actually need to configure everything. The simple example in 15 minutes still works fine, and it can be even more simplified by removing val_evaluator, val_dataloader, and val_cfg without breaking down. All configurable arguments are driven by your demands. Those not in your focus usually work fine by default.



Why are some arguments passed as dicts?
Well, this is related to MMEngine’s style. In MMEngine, we provide 2 different styles of runner construction: a) manual construction and b) construction via registry. If you are confused, the following example will give a good illustration:

from mmengine.model import BaseModel
from mmengine.runner import Runner
from mmengine.registry import MODELS # root registry for your custom model

@MODELS.register_module() # decorator for registration
class MyAwesomeModel(BaseModel): # your custom model
    def __init__(self, layers=18, activation='silu'):
        ...

# An example of manual construction
runner = Runner(
    model=dict(
        type='MyAwesomeModel',
        layers=50,
        activation='relu'),
    ...
)

# An example of construction via registry
model = MyAwesomeModel(layers=18, activation='relu')
runner = Runner(
    model=model,
    ...
)





Similar to the above example, most arguments in the runner accept both 2 types of inputs. They are conceptually equivalent. The difference is, in the former style, the module (passed in as a dict) will be built in the runner when actually needed, while in the latter style, the module has been built before being passed to the runner. The following figure illustrates the core idea of registry: it maintains the mapping between a module’s build method and its registry name. If you want to learn more about the full usage of the registry, you are recommended to read Registry tutorial.

[image: Runner Registry Illustration]

You might still be confused after the explanation. Why should we let the Runner build modules from dicts? What are the benefits? If you have such questions, then we are proud to answer: “Absolutely - no benefits!” In fact, module construction via registry only works to its best advantage when combined with a configuration file. It is still far from the best practice to write as the above example. We provide it here just to make sure you can read and get used to this writing style, which may facilitate your understanding of the actual best practice we will soon talk about - the configuration file. Stay tuned!

If you as a beginner do not immediately understand, it doesn’t matter too much, because manual construction is still a good choice, especially for small-scale development and trial-and-error due to its being IDE friendly. However, you are still expected to read and get used to the writing style via registry, so that you can avoid being unnecessarily confused and puzzled in subsequent tutorials.



Where can I find the possible configuration options for the xxx argument?
You will find extensive instructions and examples in those tutorials of the corresponding modules. You can also find all possible arguments in Runner’s API documentation. If neither of the above resolves your query, you are always encouraged to start a topic in our discussion forum [https://github.com/open-mmlab/mmengine/discussions]. It also helps us improve documentations.



I come from repositoried like MMDet/MMCls... Why does this example differ from what I've been exposed to?
Downstream repositories in OpenMMLab have widely adopted the writing style of config files. In the following chapter, we will show the usage of config files, the best practice of the runner in MMEngine, based on the above example with a slight variation.





Best practice of the Runner - config files

MMEngine provides a powerful config file system that supports Python syntax. You can almost seamlessly (which we will illustrate below) convert from the previous sample code to a config file. Here is an example:

# Save the following codes in example_config.py
# Almost copied from the above example, with some commas removed
model = dict(type='MyAwesomeModel',
    layers=2,
    activation='relu')
work_dir = 'exp/my_awesome_model'

train_dataloader = dict(
    dataset=dict(type='MyDataset',
        is_train=True,
        size=10000),
    sampler=dict(
        type='DefaultSampler',
        shuffle=True),
    collate_fn=dict(type='default_collate'),
    batch_size=64,
    pin_memory=True,
    num_workers=2)
train_cfg = dict(
    by_epoch=True,
    max_epochs=10,
    val_begin=2,
    val_interval=1)
optim_wrapper = dict(
    optimizer=dict(
        type='Adam',
        lr=0.001))
param_scheduler = dict(
    type='MultiStepLR',
    by_epoch=True,
    milestones=[4, 8],
    gamma=0.1)

val_dataloader = dict(
    dataset=dict(type='MyDataset',
        is_train=False,
        size=1000),
    sampler=dict(
        type='DefaultSampler',
        shuffle=False),
    collate_fn=dict(type='default_collate'),
    batch_size=1000,
    pin_memory=True,
    num_workers=2)
val_cfg = dict()
val_evaluator = dict(type='Accuracy')

default_hooks = dict(
    checkpoint=dict(type='CheckpointHook', interval=1))
launcher = 'none'
env_cfg = dict(
    cudnn_benchmark=False,
    backend='nccl',
    mp_cfg=dict(mp_start_method='fork'))
log_level = 'INFO'
load_from = None
resume = False





Given the above config file, we can simply load configurations and run the training pipeline in a few lines of codes as follows:

from mmengine.config import Config
from mmengine.runner import Runner
config = Config.fromfile('example_config.py')
runner = Runner.from_cfg(config)
runner.train()






Note

Although it supports Python syntax, a valid config file needs to meet the condition that all variables must be Python built-in types such as str, dict and int. Therefore, the config system is highly dependent on the registry mechanism to enable construction from built-in types to other types such as nn.Module.




Note

When using config files, you typically don’t need to manually register every module. For instance, all optimizers in torch.optim including Adam and SGD have already been registered in mmengine.optim. The rule of thumb is, try to directly access modules provided by PyTorch, and only start to register them manually after error occurs.




Note

When using config files, the implementations of your custom modules may be stored in separate files and thus not registered properly, which will lead to errors in the build process. You may find solutions in Config tutorial.




Warning

Although sharing nearly the same codes, from_cfg and __init__ differs in some default values like env_cfg.



Writing config files of the runner has been widely adopted in downstream repositories in OpenMMLab projects. It has been a de facto convention and best practice. The config files are far more featured than illustrated above. You can refer to Config tutorial for more advanced features including keywords inheriting and overriding.



Basic dataflow


Hint

In this chapter, we’ll dive deeper into the runner to illustrate dataflow and data format convention between modules managed by the runner. It may be relatively abstract and dry if you haven’t built a training pipeline with MMEngine. Therefore, you are free to skip for now and read it in conjunction with practice in the future when in need.



Now let’s dive slightly deeper into the runner, and illustrate the dataflow and data format convention under the hood (or, under the engine)!

[image: Basic Dataflow]

The diagram above illustrates the basic dataflow of the runner, where the dashed border, gray filled shapes represent different data formats, while solid boxes represent modules/methods. Due to the great flexibility and extensibility of MMEngine, you can always inherit some key base classes and override their methods, so the above diagram doesn’t always hold. It only holds when you are not customizing your own Runner or TrainLoop, and you are not overriding train_step, val_step or test_step method in your custom model. Actually, this is common for most tasks like detection and segmentation, as referred to Model tutorial.


Can you state the exact type of each data item shown in the diagram?
Unfortunately, this is not possible. Although we did heavy type annotations in MMEngine, Python is still a highly dynamic programming language, and deep learning as a data-centric system needs to be flexible enough to deal with a wide range of complex data sources. You always have full freedom to decide when you need (and sometimes must) break type conventions. Therefore, when you are customizing your module (e.g. val_evaluator), you need to make sure its input is compatible with upstream (e.g. model) output and its output can be parsed by downstream. MMEngine puts the flexibility of handling data in the hands of the user, and thus also requires the user to ensure compatibility of dataflow, which, in fact, is not that difficult once you get started.

The uniformity of data formats has always been a problem in deep learning. We are trying to improve it in MMEngine in our own way. If you are interested, you can refer to BaseDataset and BaseDataElement - but please note that they are mainly geared towards advanced users.



What's the data format convention between dataloader, model and evaluator?
For the basic dataflow shown in the diagram above, the data transfer between the above three modules can be represented by the following pseudo-code:

# training
for data_batch in train_dataloader:
    data_batch = data_preprocessor(data_batch)
    if isinstance(data_batch, dict):
        losses = model.forward(**data_batch, mode='loss')
    elif isinstance(data_batch, (list, tuple)):
        losses = model.forward(*data_batch, mode='loss')
    else:
        raise TypeError()

# validation
for data_batch in val_dataloader:
    data_batch = data_preprocessor(data_batch)
    if isinstance(data_batch, dict):
        outputs = model.forward(**data_batch, mode='predict')
    elif isinstance(data_batch, (list, tuple)):
        outputs = model.forward(**data_batch, mode='predict')
    else:
        raise TypeError()
    evaluator.process(data_samples=outputs, data_batch=data_batch)
metrics = evaluator.evaluate(len(val_dataloader.dataset))





The key points of the above pseudo-code is:


	Outputs of data_preprocessor are passed to model after unpacking


	The data_samples argument of the evaluator receives the prediction results of the model, while the data_batch argument receives the raw data coming from dataloader






What is data_preprocessor? Can I do image pre-processing such as crop and resize in it?
Though drawn separately in the diagram, data_preprocessor is a part of the model and thus can be found in Model tutorial in DataPreprocessor chapter.

In most cases, data_preprocessor needs no special attention or manual configuration. The default data_preprocessor will only do data transfer between host and GPU devices. However, if your model has incompatible inputs format with dataloader’s output, you can also customize you own data_preprocessor for data formatting.

Image pre-processing such as crop and resize is more recommended in data transforms module, but for batch-related data transforms (e.g. batch-resize), it can be implemented here.



Why does module produce 3 different outputs? What is the meaning of "loss", "predict" and "tensor"?
As described in get started in 15 minutes, you need to implement 3 data paths in your custom model’s forward function to suit different pipelines for training, validation and testing. This is further discussed in Model tutorial.



I can see that the red line is for training process and the blue line for validation/testing, but what is the green line?
Currently model outputs in “tensor” mode has not been officially used in runner. The “tensor” mode can output some intermediate results and thus facilitating debugging process.



What if I override methods such as train_step? Will the diagram totally fail?
The behavior of default train_step, val_step and test_step covers the dataflow from data_preprocessor to model outputs and optim_wrapper. The rest of the diagram will not be spoiled.




Why use the runner? (Optional reading)


Hint

Contents in this chapter will not teach you how to use the runner and MMEngine. If you are being pushed by your employer/advisor/DDL to work out a result in a few hours, it may not help you and you can feel free to skip it. However, we highly recommend taking time to read through this chapter, since it will help you better understand the aim and style of MMEngine.




Relax, time for some philosophy
Congratulations for reading through the runner tutorial, a long, long but kind of interesting (hope so) tutorial! Please believe that all of these - this tutorial, the runner, MMEngine - are intended to make things easier for you.

The runner is the “manager” of all modules in MMEngine. In the runner, all the distinct modules - whether visible ones like model and dataset, or obscure ones like logging, distributed environment and random seed - are getting organized and scheduled. The runner deals with the complex relationship between different modules and provides you with a clear, easy-to-understand and configurable interface. The benefits of this design are:


	You can modify or add your codes without spoiling your whole codebase. For example, you may start with single GPU training and you can always add a few lines of configuration codes to enable multi GPUs or even multi nodes training.


	You can continuously benefit from new features without worrying about backward compatibility. Mixed precision training, visualization, state of the art distributed training methods, various device backends… We will continue to absorb the best suggestions and cutting-edge technologies from the community while ensuring backward compatibility, and provide them to you in a clear interface.


	You can focus on your own awesome ideas without being bothered by other annoying and irrelevant details. The default values will handle most cases.




So, MMEngine and the runner will truly make things easier for you. With only a little effort on migration, your code and experiments will evolve with MMEngine. With a little more effort, the config file system allows you to manage your data, model, and experiments more efficiently. Convenience and reliability are the aims we strive for.

The blue one, or the red one - are you prepared to use MMEngine?




Suggestions on next steps

If you want to:


Write your own model structure
Refer to Model tutorial



Use your own datasets
Refer to Dataset and DataLoader tutorial



Change evaluation metrics
Refer to Evaluation tutorial



Do something related to optimizers or mixed-precision training
Refer to OptimWrapper tutorial



Schedule learning rates or other parameters during training
Refer to Parameter Scheduler tutorial



Something not mentioned above

	“Common Usage” section to the left contains more example codes


	“Advanced tutorials” to the left consists of more contents for experienced developers to make more flexible extensions to the training pipeline


	Hook provides some flexible modifications without spoiling your codes


	If none of the above solves your problem, you are always welcome to start a topic in our discussion forum [https://github.com/open-mmlab/mmengine/discussions]!
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Dataset and DataLoader


Hint

If you have never been exposed to PyTorch’s Dataset and DataLoader classes, you are recommended to read through PyTorch official tutorial [https://pytorch.org/tutorials/beginner/basics/data_tutorial.html] to get familiar with some basic concepts.



Datasets and DataLoaders are necessary components in MMEngine’s training pipeline. They are conceptually derived from and consistent with PyTorch. Typically, a dataset defines the quantity, parsing, and pre-processing of the data, while a dataloader iteratively loads data according to settings such as batch_size, shuffle, num_workers, etc. Datasets are encapsulated with dataloaders and they together constitute the data source.

In this tutorial, we will step through their usage in MMEngine runner from the outside (dataloader) to the inside (dataset) and give some practical examples. After reading through this tutorial, you will be able to:


	Master the configuration of dataloaders in MMEngine


	Learn to use existing datasets (e.g. those from torchvision) from config files


	Know about building and using your own dataset





Details on dataloader

Dataloaders can be configured in MMEngine’s Runner with 3 arguments:


	train_dataloader: Used in Runner.train() to provide training data for models


	val_dataloader: Used in Runner.val() or in Runner.train() at regular intervals for model evaluation


	test_dataloader: Used in Runner.test() for the final test




MMEngine has full support for PyTorch native DataLoader objects. Therefore, you can simply pass your valid, already built dataloaders to the runner, as shown in getting started in 15 minutes. Meanwhile, thanks to the Registry Mechanism of MMEngine, those arguments also accept dicts as inputs, as illustrated in the following example (referred to as example 1). The keys in the dictionary correspond to arguments in DataLoader’s init function.

runner = Runner(
    train_dataloader=dict(
        batch_size=32,
        sampler=dict(
            type='DefaultSampler',
            shuffle=True),
        dataset=torchvision.datasets.CIFAR10(...),
        collate_fn=dict(type='default_collate')
    )
)





When passed to the runner in the form of a dict, the dataloader will be lazily built in the runner when actually needed.


Note

For more configurable arguments of the DataLoader, please refer to PyTorch API documentation [https://pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader]




Note

If you are interested in the details of the building procedure, you may refer to build_dataloader



You may find example 1 differs from that in getting started in 15 minutes in some arguments. Indeed, due to some obscure conventions in MMEngine, you can’t seamlessly switch it to a dict by simply replacing DataLoader with dict. We will discuss the differences between our convention and PyTorch’s in the following sections, in case you run into trouble when using config files.


sampler and shuffle

One obvious difference is that we add a sampler argument to the dict. This is because we require sampler to be explicitly specified when using a dict as a dataloader. Meanwhile, shuffle is also removed from DataLoader arguments, because it conflicts with sampler in PyTorch, as referred to in PyTorch DataLoader API documentation [https://pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader].


Note

In fact, shuffle is just a notation for convenience in PyTorch implementation. If shuffle is set to True, the dataloader will automatically switch to RandomSampler



With a sampler argument, codes in example 1 is nearly equivalent to code block below

from mmengine.dataset import DefaultSampler

dataset = torchvision.datasets.CIFAR10(...)
sampler = DefaultSampler(dataset, shuffle=True)

runner = Runner(
    train_dataloader=DataLoader(
        batch_size=32,
        sampler=sampler,
        dataset=dataset,
        collate_fn=default_collate
    )
)






Warning

The equivalence of the above codes holds only if: 1) you are training with a single process, and 2) no randomness argument is passed to the runner. This is due to the fact that sampler should be built after distributed environment setup to be correct. The runner will guarantee the correct order and proper random seed by applying lazy initialization techniques, which is only possible for dict inputs. Instead, when building a sampler manually, it requires extra work and is highly error-prone. Therefore, the code block above is just for illustration and definitely not recommended. We strongly suggest passing sampler as a dict to avoid potential problems.





DefaultSampler

The above example may make you wonder what a DefaultSampler is, why use it and whether there are other options. In fact, DefaultSampler is a built-in sampler in MMEngine which eliminates the gap between distributed and non-distributed training and thus enabling a seamless conversion between them. If you have the experience of using DistributedDataParallel in PyTorch, you may be impressed by having to change the sampler argument to make it correct. However, in MMEngine, you don’t need to bother with this DefaultSampler.

DefaultSampler accepts the following arguments:


	shuffle: Set to True to load data in the dataset in random order


	seed: Random seed used to shuffle the dataset. Typically it doesn’t require manual configuration here because the runner will handle it with randomness configuration


	round_up: When set this to True, this is the same behavior as setting drop_last=False in PyTorch DataLoader. You should take care of it when doing migration from PyTorch.





Note

For more details about DefaultSampler, please refer to its API docs



DefaultSampler handles most of the cases. We ensure that error-prone details such as random seeds are handled properly when you are using it in a runner. This prevents you from getting into troubles with distributed training. Apart from DefaultSampler, you may also be interested in InfiniteSampler for iteration-based training pipelines. If you have more advanced demands, you may want to refer to the codes of these two built-in samplers to implement your own one and register it to DATA_SAMPLERS registry.

@DATA_SAMPLERS.register_module()
class MySampler(Sampler):
    pass

runner = Runner(
    train_dataloader=dict(
        sampler=dict(type='MySampler'),
        ...
    )
)







The obscure collate_fn

Among the arguments of PyTorch DataLoader, collate_fn is often ignored by users, but in MMEngine you must pay special attention to it. When you pass the dataloader argument as a dict, MMEngine will use the built-in pseudo_collate by default, which is significantly different from that, default_collate [https://pytorch.org/docs/stable/data.html#torch.utils.data.default_collate], in PyTorch. Therefore, when doing a migration from PyTorch, you have to explicitly specify the collate_fn in config files to be consistent in behavior.


Note

MMEngine uses pseudo_collate as default value is mainly due to historical compatibility reasons. You don’t have to look deeply into it. You can just know about it and avoid potential errors.



MMEngine provides 2 built-in collate_fn:


	pseudo_collate: Default value in MMEngine. It won’t concatenate data through batch index. Detailed explanations can be found in pseudo_collate API doc


	default_collate: It behaves almost identically to PyTorch’s default_collate. It will transfer data into Tensor and concatenate them through batch index. More details and slight differences from PyTorch can be found in default_collate API doc




If you want to use a custom collate_fn, you can register it to FUNCTIONS registry.

@FUNCTIONS.register_module()
def my_collate_func(data_batch: Sequence) -> Any:
    pass

runner = Runner(
    train_dataloader=dict(
        ...
        collate_fn=dict(type='my_collate_func')
    )
)








Details on dataset

Typically, datasets define the quantity, parsing, and pre-processing of the data. It is encapsulated in dataloader, allowing the latter to load data in batches. Since we fully support PyTorch DataLoader, the dataset is also compatible. Meanwhile, thanks to the registry mechanism, when a dataloader is given as a dict, its dataset argument can also be given as a dict, which enables lazy initialization in the runner. This mechanism allows for writing config files.


Use torchvision datasets

torchvision provides various open datasets. They can be directly used in MMEngine as shown in getting started in 15 minutes, where a CIFAR10 dataset is used together with torchvision’s built-in data transforms.

However, if you want to use the dataset in config files, registration is needed. What’s more, if you also require data transforms in torchvision, some more registrations are required. The following example illustrates how to do it.

import torchvision.transforms as tvt
from mmengine.registry import DATASETS, TRANSFORMS
from mmengine.dataset.base_dataset import Compose

# register CIFAR10 dataset in torchvision
# data transforms should also be built here
@DATASETS.register_module(name='Cifar10', force=False)
def build_torchvision_cifar10(transform=None, **kwargs):
    if isinstance(transform, dict):
        transform = [transform]
    if isinstance(transform, (list, tuple)):
        transform = Compose(transform)
    return torchvision.datasets.CIFAR10(**kwargs, transform=transform)

# register data transforms in torchvision
DATA_TRANSFORMS.register_module('RandomCrop', module=tvt.RandomCrop)
DATA_TRANSFORMS.register_module('RandomHorizontalFlip', module=tvt.RandomHorizontalFlip)
DATA_TRANSFORMS.register_module('ToTensor', module=tvt.ToTensor)
DATA_TRANSFORMS.register_module('Normalize', module=tvt.Normalize)

# specify in runner
runner = Runner(
    train_dataloader=dict(
        batch_size=32,
        sampler=dict(
            type='DefaultSampler',
            shuffle=True),
        dataset=dict(type='Cifar10',
            root='data/cifar10',
            train=True,
            download=True,
            transform=[
                dict(type='RandomCrop', size=32, padding=4),
                dict(type='RandomHorizontalFlip'),
                dict(type='ToTensor'),
                dict(type='Normalize', **norm_cfg)])
    )
)






Note

The above example makes extensive use of the registry mechanism and borrows the Compose module from MMEngine. If you urge to use torchvision dataset in your config files, you can refer to it and make some slight modifications. However, we recommend you borrow datasets from downstream repos such as MMDet [https://github.com/open-mmlab/mmdetection], MMCls [https://github.com/open-mmlab/mmclassification], etc. This may give you a better experience.





Customize your dataset

You are free to customize your own datasets, as you would with PyTorch. You can also copy existing datasets from your previous PyTorch projects. If you want to learn how to customize your dataset, please refer to PyTorch official tutorials [https://pytorch.org/tutorials/beginner/basics/data_tutorial.html#creating-a-custom-dataset-for-your-files]



Use MMEngine BaseDataset

Apart from directly using PyTorch native Dataset class, you can also use MMEngine’s built-in class BaseDataset to customize your own one, as referred to BaseDataset tutorial. It makes some conventions on the format of annotation files, which makes the data interface more unified and multi-task training more convenient. Meanwhile, BaseDataset can easily cooperate with built-in data transforms in MMEngine, which releases you from writing one from scratch.

Currently, BaseDataset has been widely used in downstream repos of OpenMMLab 2.0 projects.
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Model


Runner and model

As mentioned in basic dataflow, the dataflow between DataLoader, model and evaluator follows some rules. Don’t remember clearly? Let’s review it:

# Training process
for data_batch in train_dataloader:
    data_batch = model.data_preprocessor(data_batch, training=True)
    if isinstance(data_batch, dict):
        losses = model(**data_batch, mode='loss')
    elif isinstance(data_batch, (list, tuple)):
        losses = model(*data_batch, mode='loss')
    else:
        raise TypeError()
# Validation process
for data_batch in val_dataloader:
    data_batch = model.data_preprocessor(data_batch, training=False)
    if isinstance(data_batch, dict):
        outputs = model(**data_batch, mode='predict')
    elif isinstance(data_batch, (list, tuple)):
        outputs = model(**data_batch, mode='predict')
    else:
        raise TypeError()
    evaluator.process(data_samples=outputs, data_batch=data_batch)
metrics = evaluator.evaluate(len(val_dataloader.dataset))





In runner tutorial, we simply mentioned the relationship between DataLoader, model and evaluator, and introduced the concept of data_preprocessor. You may have a certain understanding of the model. However, during the running of Runner, the situation is far more complex than the above pseudo-code.

In order to focus your attention on the algorithm itself, and ignore the complex relationship between the model, DataLoader and evaluator, we designed BaseModel. In most cases, the only thing you need to do is to make your model inherit from BaseModel, and implement the forward as required to perform the training, testing, and validation process.

Before continuing reading the model tutorial, let’s throw out two questions that we hope you will find the answers after reading the model tutorial:


	When do we update the parameters of model? and how to update the parameters by a custom optimization process?


	Why is the concept of data_preprocessor necessary? What functions can it perform?






Interface introduction

Usually, we should define a model to implement the body of the algorithm. In MMEngine, model will be managed by Runner, and need to implement some interfaces, such as train_step, val_step, and test_step. For high-level tasks like detection, classification, and segmentation, the interfaces mentioned above commonly implement a standard workflow. For example, train_step will calculate the loss and update the parameters of the model, and val_step/test_step will calculate the metrics and return the predictions. Therefore, MMEnine abstracts the BaseModel to implement the common workflow.

Benefits from the BaseModel, we only need to make the model inherit from BaseModel, and implement the forward function to perform the training, testing, and validation process.


Note

BaseModel inherits from BaseModule，which can be used to initialize the model parameters dynamically.



forward: The arguments of forward need to match with the data given by DataLoader [https://pytorch.org/tutorials/beginner/basics/data_tutorial.html]. If the DataLoader samples a tuple data, forward needs to accept the value of unpacked *data. If DataLoader returns a dict data, forward needs to accept the key-value of unpacked **data. forward also accepts mode parameter, which is used to control the running branch:


	mode='loss': loss mode is enabled in training process, and forward returns a differentiable loss dict. Each key-value pair in loss dict will be used to log the training status and optimize the parameters of model. This branch will be called by train_step


	mode='predict': predict mode is enabled in validation/testing process, and forward will return predictions, which matches with arguments of process. Repositories of OpenMMLab have a more strict rules. The predictions must be a list and each element of it must be a BaseDataElement. This branch will be called by val_step


	mode='tensor': In tensor and predict modes, forward will return the predictions. The difference is that forward will return a tensor or a container or tensor which has not been processed by a series of post-process methods, such as non-maximum suppression (NMS). You can customize your post-process method after getting the result of tensor mode.




train_step: Get the loss dict by calling forward with loss mode. BaseModel implements a standard optimization process as follows:

def train_step(self, data, optim_wrapper):
    # See details in the next section
    data = self.data_preprocessor(data, training=True)
    # `loss` mode, return a loss dict. Actually train_step accepts
    #  both tuple  dict input, and unpack it with ** or *
    loss = self(**data, mode='loss')
    # Parse the loss dict and return the parsed losses for optimization
    # and log_vars for logging
    parsed_losses, log_vars = self.parse_losses()
    optim_wrapper.update_params(parsed_losses)
    return log_vars





val_step: Get the predictions by calling forward with predict mode.

def val_step(self, data, optim_wrapper):
    data = self.data_preprocessor(data, training=False)
    outputs = self(**data, mode='predict')
    return outputs





test_step: There is no difference between val_step and test_step in BaseModel. But we can customize it in the subclasses, for example, you can get validation loss in val_step.

Understand the interfaces of BaseModel, now we are able to come up with a more complete pseudo-code:

# training
for data_batch in train_dataloader:
    loss_dict = model.train_step(data_batch)
# validation
for data_batch in val_dataloader:
    preds = model.test_step(data_batch)
    evaluator.process(data_samples=outputs, data_batch=data_batch)
metrics = evaluator.evaluate(len(val_dataloader.dataset))





Great!, ignoring Hook, the pseudo-code above almost implements the main logic in loop! Let’s go back to 15 minutes to get started with MMEngine, we may truly understand what MMResNet has done:

import torch.nn.functional as F
import torchvision
from mmengine.model import BaseModel

class MMResNet50(BaseModel):
    def __init__(self):
        super().__init__()
        self.resnet = torchvision.models.resnet50()

    def forward(self, imgs, labels, mode):
        x = self.resnet(imgs)
        if mode == 'loss':
            return {'loss': F.cross_entropy(x, labels)}
        elif mode == 'predict':
            return x, labels

    # train_step, val_step and test_step have been implemented in BaseModel.
    # We list the equivalent code here for better understanding
    def train_step(self, data, optim_wrapper):
        data = self.data_preprocessor(data)
        loss = self(*data, mode='loss')
        parsed_losses, log_vars = self.parse_losses()
        optim_wrapper.update_params(parsed_losses)
        return log_vars

    def val_step(self, data, optim_wrapper):
        data = self.data_preprocessor(data)
        outputs = self(*data, mode='predict')
        return outputs

    def test_step(self, data, optim_wrapper):
        data = self.data_preprocessor(data)
        outputs = self(*data, mode='predict')
        return outputs





Now, you may have a deeper understanding of dataflow, and can answer the first question in Runner and model.

BaseModel.train_step implements the standard optimization, and if we want to customize a new optimization process, we can override it in the subclass. However, it is important to note that we need to make sure that train_step returns a loss dict.



DataPreprocessor

If your computer is equipped with a GPU (or other hardware that can accelerate training, such as MPS, IPU, etc.), when you run the 15 minutes tutorial, you will see that the program is running on the GPU, but, when does MMEngine move the data and model from the CPU to the GPU?

In fact, the Runner will move the model to the specified device during the construction, while the data will be moved to the specified device at the self.data_preprocessor(data) mentioned in the code snippet of the previous section. The moved data will be further passed to the model.

Makes sense but it’s weird, isn’t it? At this point you may be wondering:


	MMResNet50 does not define data_preprocessor, but why it can still access data_preprocessor and move data to GPU?


	Why BaseModel does not move data by data = data.to(device), but needs the DataPreprocessor to move data?




The answer to the first question is that: MMResNet50 inherit from BaseModel, and super().__init__ will build a default data_preprocessor for it. The equivalent implementation of the default one is like this:

class BaseDataPreprocessor(nn.Module):
    def forward(self, data, training=True):  # ignore the training parameter here
        # suppose data given by CIFAR10 is a tuple. Actually
        # BaseDataPreprocessor could move various type of data
        # to target device.
        return tuple(_data.cuda() for _data in data)





BaseDataPreprocessor will move the data to the specified device.

Before answering the second question, let’s think about a few more questions


	Where should we perform normalization? transform or Model?

It sounds reasonable to put it in transform to take advantage of Dataloader’s multi-process acceleration, and in the model to move it to GPU to use GPU resources to accelerate normalization. However, while we are debating whether CPU normalization is faster than GPU normalization, the time of data moving from CPU to GPU is much longer than the former.

In fact, for less computationally intensive operations like normalization, it takes much less time than data transferring, which has a higher priority for being optimized. If I could move the data to the specified device while it is still in uint8 and before it is normalized (the size of normalized float data is 4 times larger than that of unit8), it would reduce the bandwidth and greatly improve the efficiency of data transferring. This “lagged” normalization behavior is one of the main reasons why we designed the DataPreprocessor. The data preprocessor moves the data first and then normalizes it.



	How we implement the data augmentation like MixUp and Mosaic?

Although it seems that MixUp and Mosaic are just special data transformations that should be implemented in transform. However, considering that these two transformations involve fusing multiple images into one, it would be very difficult to implement them in transform since the current paradigm of transform is to do various enhancements on one image. It would be hard to read additional images from dataset because the dataset is not accessible in the transform. However, if we implement Mosaic or Mixup based on the batch_data sampled from Dataloader, everything becomes easy. We can access multiple images at the same time, and we can easily perform the image fusion operation.

class MixUpDataPreprocessor(nn.Module):
    def __init__(self, num_class, alpha):
        self.alpha = alpha

    def forward(self, data, training=True):
        data = tuple(_data.cuda() for _data in data)
        # Only perform MixUp in training mode
        if not training:
            return data

        label = F.one_hot(label)  # label to OneHot
        batch_size = len(label)
        index = torch.randperm(batch_size)  # Get the index of fused image
        img, label = data
        lam = np.random.beta(self.alpha, self.alpha)  # Fusion factor

        # MixUp
        img = lam * img + (1 - lam) * img[index, :]
        label = lam * batch_scores + (1 - lam) * batch_scores[index, :]
        # Since the returned label is onehot encoded, the `forward` of the
        # model should also be adjusted.
        return tuple(img, label)





Therefore, besides data transferring and normalization, another major function of data_preprocessor is BatchAugmentation. The modularity of the data preprocessor also helps us to achieve a free combination between algorithms and data augmentation.



	What should we do if the data sampled from the DataLoader does not match the model input, should I modify the DataLoader or the model interface?

The answer is: neither is appropriate. The ideal solution is to do the adaptation without breaking the existing interface between the model and the DataLoader. DataPreprocessor could also handle this, you can customize your DataPreprocessor to convert the incoming to the target type.





By now, You must understand the rationale of the data preprocessor and can confidently answer the two questions posed at the beginning of the tutorial! But you may still wonder what is the optim_wrapper passed to train_step, and how do the predictions returned by test_step and val_step relate to the evaluator. You will find more introduction in the evaluation tutorial and the optimizer wrapper tutorial.
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Evaluation

Coming soon. Please refer to chinese documentation [https://mmengine.readthedocs.io/zh_CN/latest/tutorials/evaluation.html].
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OptimWrapper

In previous tutorials of runner and model, we have more or less mentioned the concept of OptimWrapper, but we have not introduced why we need it and what are the advantages of OptimWrapper compared to Pytorch’s native optimizer. In this tutorial, we will help you understand the advantages and demonstrate how to use the wrapper.

As its name suggests, OptimWrapper is a high-level abstraction of PyTorch’s native optimizer, which provides a unified set of interfaces while adding more functionality. OptimWrapper supports different training strategies, including mixed precision training, gradient accumulation, and gradient clipping. We can choose the appropriate training strategy according to our needs. OptimWrapper also defines a standard process for parameter updating based on which users can switch between different training strategies for the same set of code.


OptimWrapper vs Optimizer

Now we use both the native optimizer of PyTorch and the OptimWrapper in MMEngine to perform single-precision training, mixed-precision training, and gradient accumulation to show the difference in implementations.


Model training

1.1 Single-precision training with SGD in PyTorch

import torch
from torch.optim import SGD
import torch.nn as nn
import torch.nn.functional as F

inputs = [torch.zeros(10, 1, 1)] * 10
targets = [torch.ones(10, 1, 1)] * 10
model = nn.Linear(1, 1)
optimizer = SGD(model.parameters(), lr=0.01)
optimizer.zero_grad()

for input, target in zip(inputs, targets):
    output = model(input)
    loss = F.l1_loss(output, target)
    loss.backward()
    optimizer.step()
    optimizer.zero_grad()





1.2 Single-precision training with OptimWrapper in MMEngine

from mmengine.optim import OptimWrapper

optim_wrapper = OptimWrapper(optimizer=optimizer)

for input, target in zip(inputs, targets):
    output = model(input)
    loss = F.l1_loss(output, target)
    optim_wrapper.update_params(loss)





[image: image]

The OptimWrapper.update_params achieves the standard process for gradient computation, parameter updating, and gradient zeroing, which can be used to update the model parameters directly.

2.1 Mixed-precision training with SGD in PyTorch

from torch.cuda.amp import autocast

model = model.cuda()
inputs = [torch.zeros(10, 1, 1, 1)] * 10
targets = [torch.ones(10, 1, 1, 1)] * 10

for input, target in zip(inputs, targets):
    with autocast():
        output = model(input.cuda())
    loss = F.l1_loss(output, target.cuda())
    loss.backward()
    optimizer.step()
    optimizer.zero_grad()





2.2 Mixed-precision training with OptimWrapper in MMEngine

from mmengine.optim import AmpOptimWrapper

optim_wrapper = AmpOptimWrapper(optimizer=optimizer)

for input, target in zip(inputs, targets):
    with optim_wrapper.optim_context(model):
        output = model(input.cuda())
    loss = F.l1_loss(output, target.cuda())
    optim_wrapper.update_params(loss)





[image: image]

To enable mixed precision training, users need to use AmpOptimWrapper.optim_context which is similar to the autocast for enabling the context for mixed precision training. In addition, AmpOptimWrapper.optim_context can accelerate the gradient accumulation during the distributed training, which will be introduced in the next example.

3.1 Mixed-precision training and gradient accumulation with SGD in PyTorch

for idx, (input, target) in enumerate(zip(inputs, targets)):
    with autocast():
        output = model(input.cuda())
    loss = F.l1_loss(output, target.cuda())
    loss.backward()
    if idx % 2 == 0:
        optimizer.step()
        optimizer.zero_grad()





3.2 Mixed-precision training and gradient accumulation with OptimWrapper in MMEngine

optim_wrapper = AmpOptimWrapper(optimizer=optimizer, accumulative_counts=2)

for input, target in zip(inputs, targets):
    with optim_wrapper.optim_context(model):
        output = model(input.cuda())
    loss = F.l1_loss(output, target.cuda())
    optim_wrapper.update_params(loss)





[image: image]

We only need to configure the accumulative_counts parameter and call the update_params interface to achieve the gradient accumulation function. Besides, in the distributed training scenario, if we configure the gradient accumulation with optim_context context enabled, we can avoid unnecessary gradient synchronization during the gradient accumulation step.

The OptimWrapper also provides a more fine-grained interface for users to customize with their own parameter update logics.


	backward: Accept a loss dictionary, and compute the gradient of parameters.


	step: Same as optimizer.step, and update the parameters.


	zero_grad: Same as optimizer.zero_grad, and zero the gradient of parameters




We can use the above interface to implement the same logic of parameters updating as the Pytorch optimizer.

for idx, (input, target) in enumerate(zip(inputs, targets)):
    optimizer.zero_grad()
    with optim_wrapper.optim_context(model):
        output = model(input.cuda())
    loss = F.l1_loss(output, target.cuda())
    optim_wrapper.backward(loss)
    if idx % 2 == 0:
        optim_wrapper.step()
        optim_wrapper.zero_grad()





We can also configure a gradient clipping strategy for the OptimWrapper.

# based on torch.nn.utils.clip_grad_norm_ method
optim_wrapper = AmpOptimWrapper(
    optimizer=optimizer, clip_grad=dict(max_norm=1))

# based on torch.nn.utils.clip_grad_value_ method
optim_wrapper = AmpOptimWrapper(
    optimizer=optimizer, clip_grad=dict(clip_value=0.2))







Get learning rate/momentum

The OptimWrapper provides the get_lr and get_momentum for the convenience of getting the learning rate and momentum of the first parameter group in the optimizer.

import torch.nn as nn
from torch.optim import SGD

from mmengine.optim import OptimWrapper

model = nn.Linear(1, 1)
optimizer = SGD(model.parameters(), lr=0.01)
optim_wrapper = OptimWrapper(optimizer)

print(optimizer.param_groups[0]['lr'])  # 0.01
print(optimizer.param_groups[0]['momentum'])  # 0
print(optim_wrapper.get_lr())  # {'lr': [0.01]}
print(optim_wrapper.get_momentum())  # {'momentum': [0]}





0.01
0
{'lr': [0.01]}
{'momentum': [0]}







Export/load state dicts

Similar to the optimizer, the OptimWrapper provides the state_dict and load_state_dict interfaces for exporting and loading the optimizer states. For the AmpOptimWrapper, it can export mixed-precision training parameters as well.

import torch.nn as nn
from torch.optim import SGD
from mmengine.optim import OptimWrapper, AmpOptimWrapper

model = nn.Linear(1, 1)
optimizer = SGD(model.parameters(), lr=0.01)

optim_wrapper = OptimWrapper(optimizer=optimizer)
amp_optim_wrapper = AmpOptimWrapper(optimizer=optimizer)

# export state dicts
optim_state_dict = optim_wrapper.state_dict()
amp_optim_state_dict = amp_optim_wrapper.state_dict()

print(optim_state_dict)
print(amp_optim_state_dict)
optim_wrapper_new = OptimWrapper(optimizer=optimizer)
amp_optim_wrapper_new = AmpOptimWrapper(optimizer=optimizer)

# load state dicts
amp_optim_wrapper_new.load_state_dict(amp_optim_state_dict)
optim_wrapper_new.load_state_dict(optim_state_dict)





{'state': {}, 'param_groups': [{'lr': 0.01, 'momentum': 0, 'dampening': 0, 'weight_decay': 0, 'nesterov': False, 'maximize': False, 'foreach': None, 'params': [0, 1]}]}
{'state': {}, 'param_groups': [{'lr': 0.01, 'momentum': 0, 'dampening': 0, 'weight_decay': 0, 'nesterov': False, 'maximize': False, 'foreach': None, 'params': [0, 1]}], 'loss_scaler': {'scale': 65536.0, 'growth_factor': 2.0, 'backoff_factor': 0.5, 'growth_interval': 2000, '_growth_tracker': 0}}







Use multiple optimizers

Considering that algorithms like GANs usually need to use multiple optimizers to train the generator and the discriminator, MMEngine provides a container class called OptimWrapperDict to manage them. OptimWrapperDict stores the sub-OptimWrapper in the form of dict, and can be accessed and traversed just like a dict.

Unlike regular OptimWrapper, OptimWrapperDict does not provide methods such as update_prarms, optim_context, backward, step, etc. Therefore, it cannot be used directly to train models. We suggest implementing the logic of parameter updating by accessing the sub-OptimWarpper in OptimWrapperDict directly.

Users may wonder why not just use dict to manage multiple optimizers since OptimWrapperDict does not have training capabilities. Actually, the core function of OptimWrapperDict is to support exporting or loading the state dictionary of all sub-OptimWrapper and to support getting learning rates and momentums as well. Without OptimWrapperDict, MMEngine needs to do a lot of if-else in OptimWrapper to get the states of the OptimWrappers.

from torch.optim import SGD
import torch.nn as nn

from mmengine.optim import OptimWrapper, OptimWrapperDict

gen = nn.Linear(1, 1)
disc = nn.Linear(1, 1)
optimizer_gen = SGD(gen.parameters(), lr=0.01)
optimizer_disc = SGD(disc.parameters(), lr=0.01)

optim_wapper_gen = OptimWrapper(optimizer=optimizer_gen)
optim_wapper_disc = OptimWrapper(optimizer=optimizer_disc)
optim_dict = OptimWrapperDict(gen=optim_wapper_gen, disc=optim_wapper_disc)

print(optim_dict.get_lr())  # {'gen.lr': [0.01], 'disc.lr': [0.01]}
print(optim_dict.get_momentum())  # {'gen.momentum': [0], 'disc.momentum': [0]}





{'gen.lr': [0.01], 'disc.lr': [0.01]}
{'gen.momentum': [0], 'disc.momentum': [0]}





As shown in the above example, OptimWrapperDict exports learning rates and momentums for all OptimWrappers easily, and OptimWrapperDict can export and load all the state dicts in a similar way.



Configure the OptimWapper in Runner

We first need to configure the optimizer for the OptimWrapper. MMEngine automatically adds all optimizers in PyTorch to the OPTIMIZERS registry, and users can specify the optimizers they need in the form of a dict. All supported optimizers in PyTorch are listed here [https://pytorch.org/docs/stable/optim.html#algorithms]. In addition, DAdaptAdaGrad, DAdaptAdam, and DAdaptSGD can be used by installing dadaptation [https://github.com/facebookresearch/dadaptation]. Lion optimizer can used by install lion-pytorch [https://github.com/lucidrains/lion-pytorch].

Now we take setting up a SGD OptimWrapper as an example.

optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)





Here we have set up an OptimWrapper with a SGD optimizer with the learning rate and momentum parameters as specified. Since OptimWrapper is designed for standard single precision training, we can also omit the type field in the configuration:

optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
optim_wrapper = dict(optimizer=optimizer)





To enable mixed-precision training and gradient accumulation, we change type to AmpOptimWrapper and specify the accumulative_counts parameter.

optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
optim_wrapper = dict(type='AmpOptimWrapper', optimizer=optimizer, accumulative_counts=2)






Note

If you are new to reading the MMEngine tutorial and are not familiar with concepts such as configs and registries, it is recommended to skip the following advanced tutorials for now and read other documents first. Of course, if you already have a good understanding of this prerequisite knowledge, we highly recommend reading the advanced part which covers:


	How to customize the learning rate, decay coefficient, and other parameters of the model parameters in the configuration of OptimWrapper.


	how to customize the construction policy of the optimizer.




Apart from the pre-requisite knowledge of the configs and the registries, it is recommended to have a thorough understanding of the native construction of PyTorch optimizer before starting the advanced tutorials.






Advanced usages

PyTorch’s optimizer allows different hyperparameters to be set for each parameter in the model, such as using different learning rates for the backbone and head for a classification model.

from torch.optim import SGD
import torch.nn as nn

model = nn.ModuleDict(dict(backbone=nn.Linear(1, 1), head=nn.Linear(1, 1)))
optimizer = SGD([{'params': model.backbone.parameters()},
     {'params': model.head.parameters(), 'lr': 1e-3}],
    lr=0.01,
    momentum=0.9)





In the above example, we set a learning rate of 0.01 for the backbone, while another learning rate of 1e-3 for the head. Users can pass a list of dictionaries containing the different parts of the model’s parameters and their corresponding hyperparameters to the optimizer, allowing for fine-grained adjustment of the model optimization.

In MMEngine, the optimizer wrapper constructor allows users to set hyperparameters in different parts of the model directly by setting the paramwise_cfg in the configuration file rather than by modifying the code of building the optimizer.


Set different hyperparamters for different types of parameters

The default optimizer wrapper constructor in MMEngine supports setting different hyperparameters for different types of parameters in the model. For example, we can set norm_decay_mult=0 for paramwise_cfg to set the weight decay factor to 0 for the weight and bias of the normalization layer to implement the trick of not decaying the weight of the normalization layer as mentioned in the Bag of Tricks [https://arxiv.org/abs/1812.01187].

Here, we set the weight decay coefficient in all normalization layers (head.bn) in ToyModel to 0 as follows.

from mmengine.optim import build_optim_wrapper
from collections import OrderedDict

class ToyModel(nn.Module):
    def __init__(self):
        super().__init__()
        self.backbone = nn.ModuleDict(
            dict(layer0=nn.Linear(1, 1), layer1=nn.Linear(1, 1)))
        self.head = nn.Sequential(
            OrderedDict(
                linear=nn.Linear(1, 1),
                bn=nn.BatchNorm1d(1)))


optim_wrapper = dict(
    optimizer=dict(type='SGD', lr=0.01, weight_decay=0.0001),
    paramwise_cfg=dict(norm_decay_mult=0))
optimizer = build_optim_wrapper(ToyModel(), optim_wrapper)





08/23 22:02:43 - mmengine - INFO - paramwise_options -- backbone.layer0.bias:lr=0.01
08/23 22:02:43 - mmengine - INFO - paramwise_options -- backbone.layer0.bias:weight_decay=0.0001
08/23 22:02:43 - mmengine - INFO - paramwise_options -- backbone.layer1.bias:lr=0.01
08/23 22:02:43 - mmengine - INFO - paramwise_options -- backbone.layer1.bias:weight_decay=0.0001
08/23 22:02:43 - mmengine - INFO - paramwise_options -- head.linear.bias:lr=0.01
08/23 22:02:43 - mmengine - INFO - paramwise_options -- head.linear.bias:weight_decay=0.0001
08/23 22:02:43 - mmengine - INFO - paramwise_options -- head.bn.weight:weight_decay=0.0
08/23 22:02:43 - mmengine - INFO - paramwise_options -- head.bn.bias:weight_decay=0.0





In addition to configuring the weight decay, paramwise_cfg of MMEngine’s default optimizer wrapper constructor supports the following hyperparameters as well.

lr_mult: Learning rate for all parameters.

decay_mult: Decay coefficient for all parameters.

bias_lr_mult: Learning rate coefficient of the bias (excluding bias of normalization layer and offset of the deformable convolution).

bias_decay_mult: Weight decay coefficient of the bias (excluding bias of normalization layer and offset of the deformable convolution).

norm_decay_mult: Weight decay coefficient for weights and bias of the normalization layer.

flat_decay_mult: Weight decay coefficient of the one-dimension parameters.

dwconv_decay_mult: Decay coefficient of the depth-wise convolution.

bypass_duplicate: Whether to skip duplicate parameters, default to False.

dcn_offset_lr_mult: Learning rate of the deformable convolution.



Set different hyperparamters for different model modules

In addition, as shown in the PyTorch code above, in MMEngine we can also set different hyperparameters for any module in the model by setting custom_keys in paramwise_cfg.

If we want to set the learning rate and the decay coefficient to 0 for backbone.layer0, and set the learning rate to 0.001 for the rest of the modules in the backbone. At the same time, we want to keep all the learning rate to 0.001 for the head module. We can do it in this way:

optim_wrapper = dict(
    optimizer=dict(type='SGD', lr=0.01, weight_decay=0.0001),
    paramwise_cfg=dict(
        custom_keys={
            'backbone.layer0': dict(lr_mult=0, decay_mult=0),
            'backbone': dict(lr_mult=1),
            'head': dict(lr_mult=0.1)
        }))
optimizer = build_optim_wrapper(ToyModel(), optim_wrapper)





08/23 22:02:43 - mmengine - INFO - paramwise_options -- backbone.layer0.weight:lr=0.0
08/23 22:02:43 - mmengine - INFO - paramwise_options -- backbone.layer0.weight:weight_decay=0.0
08/23 22:02:43 - mmengine - INFO - paramwise_options -- backbone.layer0.weight:lr_mult=0
08/23 22:02:43 - mmengine - INFO - paramwise_options -- backbone.layer0.weight:decay_mult=0
08/23 22:02:43 - mmengine - INFO - paramwise_options -- backbone.layer0.bias:lr=0.0
08/23 22:02:43 - mmengine - INFO - paramwise_options -- backbone.layer0.bias:weight_decay=0.0
08/23 22:02:43 - mmengine - INFO - paramwise_options -- backbone.layer0.bias:lr_mult=0
08/23 22:02:43 - mmengine - INFO - paramwise_options -- backbone.layer0.bias:decay_mult=0
08/23 22:02:43 - mmengine - INFO - paramwise_options -- backbone.layer1.weight:lr=0.01
08/23 22:02:43 - mmengine - INFO - paramwise_options -- backbone.layer1.weight:weight_decay=0.0001
08/23 22:02:43 - mmengine - INFO - paramwise_options -- backbone.layer1.weight:lr_mult=1
08/23 22:02:43 - mmengine - INFO - paramwise_options -- backbone.layer1.bias:lr=0.01
08/23 22:02:43 - mmengine - INFO - paramwise_options -- backbone.layer1.bias:weight_decay=0.0001
08/23 22:02:43 - mmengine - INFO - paramwise_options -- backbone.layer1.bias:lr_mult=1
08/23 22:02:43 - mmengine - INFO - paramwise_options -- head.linear.weight:lr=0.001
08/23 22:02:43 - mmengine - INFO - paramwise_options -- head.linear.weight:weight_decay=0.0001
08/23 22:02:43 - mmengine - INFO - paramwise_options -- head.linear.weight:lr_mult=0.1
08/23 22:02:43 - mmengine - INFO - paramwise_options -- head.linear.bias:lr=0.001
08/23 22:02:43 - mmengine - INFO - paramwise_options -- head.linear.bias:weight_decay=0.0001
08/23 22:02:43 - mmengine - INFO - paramwise_options -- head.linear.bias:lr_mult=0.1
08/23 22:02:43 - mmengine - INFO - paramwise_options -- head.bn.weight:lr=0.001
08/23 22:02:43 - mmengine - INFO - paramwise_options -- head.bn.weight:weight_decay=0.0001
08/23 22:02:43 - mmengine - INFO - paramwise_options -- head.bn.weight:lr_mult=0.1
08/23 22:02:43 - mmengine - INFO - paramwise_options -- head.bn.bias:lr=0.001
08/23 22:02:43 - mmengine - INFO - paramwise_options -- head.bn.bias:weight_decay=0.0001
08/23 22:02:43 - mmengine - INFO - paramwise_options -- head.bn.bias:lr_mult=0.1





The state dictionary of the above model can be printed as the following:

for name, val in ToyModel().named_parameters():
    print(name)





backbone.layer0.weight
backbone.layer0.bias
backbone.layer1.weight
backbone.layer1.bias
head.linear.weight
head.linear.bias
head.bn.weight
head.bn.bias





Each field in custom_keys is defined as follows.


	'backbone': dict(lr_mult=1): Set the learning rate of the parameter whose name is prefixed with backbone to 1.


	'backbone.layer0': dict(lr_mult=0, decay_mult=0): Set the learning rate of the parameter with the prefix backbone.layer0 to 0 and the decay coefficient to 0. This configuration has a higher priority than the first one.


	'head': dict(lr_mult=0.1): Set the learning rate of the parameter whose name is prefixed with head to 0.1.






Customize optimizer construction policies

Like other modules in MMEngine, the optimizer wrapper constructor is also managed by the registry. We can customize the hyperparameter policies by implementing custom optimizer wrapper constructors.

For example, we can implement an optimizer wrapper constructor called LayerDecayOptimWrapperConstructor that automatically set decreasing learning rates for layers of different depths of the model.

from mmengine.optim import DefaultOptimWrapperConstructor
from mmengine.registry import OPTIM_WRAPPER_CONSTRUCTORS
from mmengine.logging import print_log


@OPTIM_WRAPPER_CONSTRUCTORS.register_module(force=True)
class LayerDecayOptimWrapperConstructor(DefaultOptimWrapperConstructor):

    def __init__(self, optim_wrapper_cfg, paramwise_cfg=None):
        super().__init__(optim_wrapper_cfg, paramwise_cfg=None)
        self.decay_factor = paramwise_cfg.get('decay_factor', 0.5)

        super().__init__(optim_wrapper_cfg, paramwise_cfg)

    def add_params(self, params, module, prefix='' ,lr=None):
        if lr is None:
            lr = self.base_lr

        for name, param in module.named_parameters(recurse=False):
            param_group = dict()
            param_group['params'] = [param]
            param_group['lr'] = lr
            params.append(param_group)
            full_name = f'{prefix}.{name}' if prefix else name
            print_log(f'{full_name} : lr={lr}', logger='current')

        for name, module in module.named_children():
            chiled_prefix = f'{prefix}.{name}' if prefix else name
            self.add_params(
                params, module, chiled_prefix, lr=lr * self.decay_factor)


class ToyModel(nn.Module):

    def __init__(self) -> None:
        super().__init__()
        self.layer = nn.ModuleDict(dict(linear=nn.Linear(1, 1)))
        self.linear = nn.Linear(1, 1)


model = ToyModel()

optim_wrapper = dict(
    optimizer=dict(type='SGD', lr=0.01, weight_decay=0.0001),
    paramwise_cfg=dict(decay_factor=0.5),
    constructor='LayerDecayOptimWrapperConstructor')

optimizer = build_optim_wrapper(model, optim_wrapper)





08/23 22:20:26 - mmengine - INFO - layer.linear.weight : lr=0.0025
08/23 22:20:26 - mmengine - INFO - layer.linear.bias : lr=0.0025
08/23 22:20:26 - mmengine - INFO - linear.weight : lr=0.005
08/23 22:20:26 - mmengine - INFO - linear.bias : lr=0.005





When add_params is called for the first time, the params argument is an empty list and the module is the ToyModel instance. Please refer to the Optimizer Wrapper Constructor Documentation for detailed explanations on overloading.

Similarly, if we want to construct multiple optimizers, we also need to implement a custom constructor.

@OPTIM_WRAPPER_CONSTRUCTORS.register_module()
class MultipleOptimiWrapperConstructor:
    ...







Adjust hyperparameters during training

The hyperparameters in the optimizer can only be set to a fixed value at the time it is constructed, and you cannot adjust parameters such as the learning rate during training by just using the optimizer wrapper. In MMEngine, we have implemented a parameter scheduler that allows the tuning of parameters during training. For the usage of the parameter scheduler, please refer to the Parameter Scheduler
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Parameter Scheduler

During neural network training, optimization hyperparameters (e.g. learning rate) are usually adjusted along with the training process.
One of the simplest and most common learning rate adjustment strategies is multi-step learning rate decay, which reduces the learning rate to a fraction at regular intervals.
PyTorch provides LRScheduler to implement various learning rate adjustment strategies. In MMEngine, we have extended it and implemented a more general ParamScheduler.
It can adjust optimization hyperparameters such as learning rate and momentum. It also supports the combination of multiple schedulers to create more complex scheduling strategies.


Usage

We first introduce how to use PyTorch’s torch.optim.lr_scheduler to adjust learning rate.


How to use PyTorch's builtin learning rate scheduler?
Here is an example which refers from PyTorch official documentation [https://pytorch.org/docs/stable/optim.html]:

Initialize an ExponentialLR object, and call the step method after each training epoch.

import torch
from torch.optim import SGD
from torch.optim.lr_scheduler import ExponentialLR

model = torch.nn.Linear(1, 1)
dataset = [torch.randn((1, 1, 1)) for _ in range(20)]
optimizer = SGD(model, 0.1)
scheduler = ExponentialLR(optimizer, gamma=0.9)

for epoch in range(10):
    for data in dataset:
        optimizer.zero_grad()
        output = model(data)
        loss = 1 - output
        loss.backward()
        optimizer.step()
    scheduler.step()






mmengine.optim.scheduler supports most of PyTorch’s learning rate schedulers such as ExponentialLR, LinearLR, StepLR, MultiStepLR, etc. Please refer to parameter scheduler API documentation [https://mmengine.readthedocs.io/en/latest/api/optim.html#scheduler] for all of the supported schedulers.

MMEngine also supports adjusting momentum with parameter schedulers. To use momentum schedulers, replace LR in the class name to Momentum, such as ExponentialMomentum，LinearMomentum. Further, we implement the general parameter scheduler ParamScheduler, which is used to adjust the specified hyperparameters in the optimizer, such as weight_decay, etc. This feature makes it easier to apply some complex hyperparameter tuning strategies.

Different from the above example, MMEngine usually does not need to manually implement the training loop and call optimizer.step(). The runner will automatically manage the training progress and control the execution of the parameter scheduler through ParamSchedulerHook.


Use a single LRScheduler

If only one scheduler needs to be used for the entire training process, there is no difference with PyTorch’s learning rate scheduler.

# build the scheduler manually
from torch.optim import SGD
from mmengine.runner import Runner
from mmengine.optim.scheduler import MultiStepLR

optimizer = SGD(model.parameters(), lr=0.01, momentum=0.9)
param_scheduler = MultiStepLR(optimizer, milestones=[8, 11], gamma=0.1)

runner = Runner(
    model=model,
    optim_wrapper=dict(
        optimizer=optimizer),
    param_scheduler=param_scheduler,
    ...
    )
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If using the runner with the registry and config file, we can specify the scheduler by setting the param_scheduler field in the config. The runner will automatically build a parameter scheduler based on this field:

# build the scheduler with config file
param_scheduler = dict(type='MultiStepLR', by_epoch=True, milestones=[8, 11], gamma=0.1)





Note that the parameter by_epoch is added here, which controls the frequency of learning rate adjustment. When set to True, it means adjusting by epoch. When set to False, it means adjusting by iteration. The default value is True.

In the above example, it means to adjust according to epochs. At this time, the unit of the parameters is epoch. For example, [8, 11] in milestones means that the learning rate will be multiplied by 0.1 at the end of the 8 and 11 epoch.

When the frequency is modified, the meaning of the count-related settings of the scheduler will be changed accordingly. When by_epoch=True, the numbers in milestones indicate at which epoch the learning rate decay is performed, and when by_epoch=False it indicates at which iteration the learning rate decay is performed.

Here is an example of adjusting by iterations: At the end of the 600th and 800th iterations, the learning rate will be multiplied by 0.1 times.

param_scheduler = dict(type='MultiStepLR', by_epoch=False, milestones=[600, 800], gamma=0.1)





[image: image]

If users want to use the iteration-based frequency while filling the scheduler config settings by epoch, MMEngine’s scheduler also provides an automatic conversion method. Users can call the build_iter_from_epoch method and provide the number of iterations for each training epoch to construct a scheduler object updated by iterations:

epoch_length = len(train_dataloader)
param_scheduler = MultiStepLR.build_iter_from_epoch(optimizer, milestones=[8, 11], gamma=0.1, epoch_length=epoch_length)





If using config to build a scheduler, just add convert_to_iter_based=True to the field. The runner will automatically call build_iter_from_epoch to convert the epoch-based config to an iteration-based scheduler object:

param_scheduler = dict(type='MultiStepLR', by_epoch=True, milestones=[8, 11], gamma=0.1, convert_to_iter_based=True)





Below is a Cosine Annealing learning rate scheduler that is updated by epoch, where the learning rate is only modified after each epoch:

param_scheduler = dict(type='CosineAnnealingLR', by_epoch=True, T_max=12)
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After automatically conversion, the learning rate is updated by iteration. As you can see from the graph below, the learning rate changes more smoothly.

param_scheduler = dict(type='CosineAnnealingLR', by_epoch=True, T_max=12, convert_to_iter_based=True)





[image: image]



Combine multiple LRSchedulers (e.g. learning rate warm-up)

In the training process of some algorithms, the learning rate is not adjusted according to a certain scheduling strategy from beginning to end. The most common example is learning rate warm-up.

For example, in the first few iterations, a linear strategy is used to increase the learning rate from a small value to normal, and then another strategy is applied.

MMEngine supports combining multiple schedulers together. Just modify the param_scheduler field in the config file to a list of scheduler config, and the ParamSchedulerHook can automatically process the scheduler list. The following example implements learning rate warm-up.

param_scheduler = [
    # Linear learning rate warm-up scheduler
    dict(type='LinearLR',
         start_factor=0.001,
         by_epoch=False,  # Updated by iterations
         begin=0,
         end=50),  # Warm up for the first 50 iterations
    # The main LRScheduler
    dict(type='MultiStepLR',
         by_epoch=True,  # Updated by epochs
         milestones=[8, 11],
         gamma=0.1)
]
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Note that the begin and end parameters are added here. These two parameters specify the valid interval of the scheduler. The valid interval usually only needs to be set when multiple schedulers are combined, and can be ignored when using a single scheduler. When the begin and end parameters are specified, it means that the scheduler only takes effect in the [begin, end) interval, and the unit is determined by the by_epoch parameter.

In the above example, the by_epoch of LinearLR in the warm-up phase is False, which means that the scheduler only takes effect in the first 50 iterations. After more than 50 iterations, the scheduler will no longer take effect, and the second scheduler, which is MultiStepLR, will control the learning rate. When combining different schedulers, the by_epoch parameter does not have to be the same for each scheduler.

Here is another example:

param_scheduler = [
    # Use a linear warm-up at [0, 100) iterations
    dict(type='LinearLR',
         start_factor=0.001,
         by_epoch=False,
         begin=0,
         end=100),
    # Use a cosine learning rate at [100, 900) iterations
    dict(type='CosineAnnealingLR',
         T_max=800,
         by_epoch=False,
         begin=100,
         end=900)
]
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The above example uses a linear learning rate warm-up for the first 100 iterations, and then uses a cosine annealing learning rate scheduler with a period of 800 from the 100th to the 900th iteration.

Users can combine any number of schedulers. If the valid intervals of two schedulers are not connected to each other which leads to an interval that is not covered, the learning rate of this interval remains unchanged. If the valid intervals of the two schedulers overlap, the adjustment of the learning rate will be triggered in the order of the scheduler config (similar with ChainedScheduler [https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ChainedScheduler.html#chainedscheduler]).

We recommend using different learning rate scheduling strategies in different stages of training to avoid overlapping of the valid intervals. Be careful If you really need to stack two schedulers overlapped. We recommend using learning rate visualization tool to visualize the learning rate after stacking, to avoid the adjustment not as expected.




How to adjust other hyperparameters


Momentum

Like learning rate, momentum is a schedulable hyperparameter in the optimizer’s parameter group. The momentum scheduler is used in exactly the same way as the learning rate scheduler. Just add the momentum scheduler config to the list in the param_scheduler field.

Example:

param_scheduler = [
    # the lr scheduler
    dict(type='LinearLR', ...),
    # the momentum scheduler
    dict(type='LinearMomentum',
         start_factor=0.001,
         by_epoch=False,
         begin=0,
         end=1000)
]







Generic parameter scheduler

MMEngine also provides a set of generic parameter schedulers for scheduling other hyperparameters in the param_groups of the optimizer. Change LR in the class name of the learning rate scheduler to Param, such as LinearParamScheduler. Users can schedule the specific hyperparameters by setting the param_name variable of the scheduler.

Here is an example:

param_scheduler = [
    dict(type='LinearParamScheduler',
         param_name='lr',  # adjust the 'lr' in `optimizer.param_groups`
         start_factor=0.001,
         by_epoch=False,
         begin=0,
         end=1000)
]





By setting the param_name to 'lr', this parameter scheduler is equivalent to LinearLRScheduler.

In addition to learning rate and momentum, users can also schedule other parameters in optimizer.param_groups. The schedulable parameters depend on the optimizer used. For example, when using the SGD optimizer with weight_decay, the weight_decay can be adjusted as follows:

param_scheduler = [
    dict(type='LinearParamScheduler',
         param_name='weight_decay',  # adjust 'weight_decay' in `optimizer.param_groups`
         start_factor=0.001,
         by_epoch=False,
         begin=0,
         end=1000)
]
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Hook

Hook programming is a programming pattern in which a mount point is set in one or more locations of a program. When the program runs to a mount point, all methods registered to it at runtime are automatically called. Hook programming can increase the flexibility and extensibility of the program, since users can register custom methods to the mount point to be called without modifying the code in the program.


Built-in Hooks

MMEngine encapsules many ultilities as built-in hooks. These hooks are divided into two categories, namely default hooks and custom hooks. The former refers to those registered with the Runner by default, while the latter refers to those registered by the user on demand.

Each hook has a corresponding priority. At each mount point, hooks with higher priority are called earlier by the Runner. When sharing the same priority, the hooks are called in their registration order. The priority list is as follows.


	HIGHEST (0)


	VERY_HIGH (10)


	HIGH (30)


	ABOVE_NORMAL (40)


	NORMAL (50)


	BELOW_NORMAL (60)


	LOW (70)


	VERY_LOW (90)


	LOWEST (100)




default hooks



	Name

	Function

	Priority





	RuntimeInfoHook

	update runtime information into message hub

	VERY_HIGH (10)



	IterTimerHook

	Update the time spent during iteration into message hub

	NORMAL (50)



	DistSamplerSeedHook

	Ensure distributed Sampler shuffle is active

	NORMAL (50)



	LoggerHook

	Collect logs from different components of Runner and write them to terminal, JSON file, tensorboard and wandb .etc

	BELOW_NORMAL (60)



	ParamSchedulerHook

	update some hyper-parameters of optimizer

	LOW (70)



	CheckpointHook

	Save checkpoints periodically

	VERY_LOW (90)






custom hooks



	Name

	Function

	Priority





	EMAHook

	apply Exponential Moving Average (EMA) on the model during training

	NORMAL (50)



	EmptyCacheHook

	Releases all unoccupied cached GPU memory during the process of training

	NORMAL (50)



	SyncBuffersHook

	Synchronize model buffers at the end of each epoch

	NORMAL (50)







Note

It is not recommended to modify the priority of the default hooks, as hooks with lower priority may depend on hooks with higher priority. For example, CheckpointHook needs to have a lower priority than ParamSchedulerHook so that the saved optimizer state is correct. Also, the priority of custom hooks defaults to NORMAL (50).



The two types of hooks are set differently in the Runner, with the configuration of default hooks being passed to the default_hooks parameter of the Runner and the configuration of custom hooks being passed to the custom_hooks parameter, as follows.

from mmengine.runner import Runner
default_hooks = dict(
    runtime_info=dict(type='RuntimeInfoHook'),
    timer=dict(type='IterTimerHook'),
    sampler_seed=dict(type='DistSamplerSeedHook'),
    logger=dict(type='LoggerHook'),
    param_scheduler=dict(type='ParamSchedulerHook'),
    checkpoint=dict(type='CheckpointHook', interval=1),
)
custom_hooks = [dict(type='EmptyCacheHook')]
runner = Runner(default_hooks=default_hooks, custom_hooks=custom_hooks, ...)
runner.train()






LoggerHook

LoggerHook collects logs from different components of Runner and write them to terminal, JSON file, tensorboard and wandb, etc.



CheckpointHook

CheckpointHook saves the checkpoints at a given interval. In the case of distributed training, only the master process will save the checkpoints. The main features of CheckpointHook is as follows.


	Save checkpoints by interval, and support saving them by epoch or iteration


	Save the most recent checkpoints


	Save the best checkpoints


	Specify the path to save the checkpoints


	Make checkpoints for publish




For more features, please read the CheckpointHook API documentation.

The four features mentioned above are described below.


	Save checkpoints by interval, and support saving them by epoch or iteration

Suppose we train a total of 20 epochs and want to save the checkpoints every 5 epochs, the following configuration will help us achieve this requirement.

# the default value of by_epoch is True
default_hooks = dict(checkpoint=dict(type='CheckpointHook', interval=5, by_epoch=True))





If you want to save checkpoints by iteration, you can set by_epoch to False and interval=5 to save them every 5 iterations.

default_hooks = dict(checkpoint=dict(type='CheckpointHook', interval=5, by_epoch=False))







	Save the most recent checkpoints

If you only want to keep a certain number of checkpoints, you can set the max_keep_ckpts parameter. When the number of checkpoints saved exceeds max_keep_ckpts, the previous checkpoints will be deleted.

default_hooks = dict(checkpoint=dict(type='CheckpointHook', interval=5, max_keep_ckpts=2))





The above config shows that if a total of 20 epochs are trained, the model will be saved at epochs 5, 10, 15, and 20, but the checkpoint epoch_5.pth will be deleted at epoch 15, and at epoch 20 the checkpoint epoch_10.pth will be deleted, so that only the epoch_15.pth and epoch_20.pth will be saved.



	Save the best checkpoints

If you want to save the best checkpoints of the validation set for the training process, you can set the save_best parameter. If set to 'auto', the current checkpoint are judged to be best based on the first evaluation metric of the validation set (the evaluation metrics returned by evaluator are an ordered dictionary).

default_hooks = dict(checkpoint=dict(type='CheckpointHook', save_best='auto'))





You can also directly specify the value of save_best as the evaluation metric, for example, in a classification task, you can specify save_best='top-1', then the current checkpoint will be judged as best based on the value of 'top-1'.

In addition to the save_best parameter, other parameters related to saving the best checkpoint are rule, greater_keys and less_keys, which are used to imply whether its good to have large value or not. For example, if you specify save_best='top-1', you can specify rule='greater' to imply that the larger the value, the better the checkpoint.



	Specify the path to save the checkpoints

The checkpoints are saved in work_dir by default, but the path can be changed by setting out_dir.

default_hooks = dict(checkpoint=dict(type='CheckpointHook', interval=5, out_dir='/path/of/directory'))







	Make checkpoints for publish

If you want to automatically generate publishable checkpoints after training (remove unnecessary keys, such as optimizer state), you can set the published_keys parameter to choose which information to keep. Note: You need to set the save_best or save_last parameters accordingly so that the releasable checkpoints will be generated. Setting save_best will generate the releasable weights of the optimal checkpoint, and setting save_last will generate the releasable final checkpoint. These two parameters can also be set at the same time.

default_hooks = dict(checkpoint=dict(type='CheckpointHook', interval=1, save_best='accuracy', rule='less', published_keys=['meta', 'state_dict']))









LoggerHook collects logs from different components of Runner and write them to terminal, JSON file, tensorboard and wandb .etc.

If we want to output (or save) the logs every 20 iterations, we can set the interval parameter and configure it as follows.

default_hooks = dict(logger=dict(type='LoggerHook', interval=20))





If you are interested in how MMEngine manages logging, you can refer to logging.



ParamSchedulerHook

ParamSchedulerHook iterates through all optimizer parameter schedulers of the Runner and calls their step method to update the optimizer parameters in order. See Parameter Schedulers for more details about what are parameter schedulers.

ParamSchedulerHook is registered to the Runner by default and has no configurable parameters, so there is no need to configure it.



IterTimerHook

IterTimerHook is used to record the time taken to load data and iterate once.

IterTimerHook is registered to the Runner by default and has no configurable parameters, so there is no need to configure it.



DistSamplerSeedHook

DistSamplerSeedHook calls the step method of the Sampler during distributed training to ensure that the shuffle operation takes effect.

DistSamplerSeedHook is registered to the Runner by default and has no configurable parameters, so there is no need to configure it.



RuntimeInfoHook

RuntimeInfoHook will update the current runtime information (e.g. epoch, iter, max_epochs, max_iters, lr, metrics, etc.) to the message hub at different mount points in the Runner so that other modules without access to the Runner can obtain this information.

RuntimeInfoHook is registered to the Runner by default and has no configurable parameters, so there is no need to configure it.



EMAHook

EMAHook performs an exponential moving average operation on the model during training, with the aim of improving the robustness of the model. Note that the model generated by exponential moving average is only used for validation and testing, and does not affect training.

custom_hooks = [dict(type='EMAHook')]
runner = Runner(custom_hooks=custom_hooks, ...)
runner.train()





EMAHook uses ExponentialMovingAverage by default, with optional values of StochasticWeightAverage and MomentumAnnealingEMA. Other averaging strategies can be used by setting ema_type.

custom_hooks = [dict(type='EMAHook', ema_type='StochasticWeightAverage')]





See EMAHook API Reference for more usage.



EmptyCacheHook

EmptyCacheHook calls torch.cuda.empty_cache() to release all unoccupied cached GPU memory. The timing of releasing memory can be controlled by setting parameters like before_epoch, after_iter, and after_epoch, meaning before the start of each epoch, after each iteration, and after each epoch respectively.

# The release operation is performed at the end of each epoch
custom_hooks = [dict(type='EmptyCacheHook', after_epoch=True)]
runner = Runner(custom_hooks=custom_hooks, ...)
runner.train()







SyncBuffersHook

SyncBuffersHook synchronizes the buffer of the model at the end of each epoch during distributed training, e.g. running_mean and running_var of the BN layer.

custom_hooks = [dict(type='SyncBuffersHook')]
runner = Runner(custom_hooks=custom_hooks, ...)
runner.train()








Customize Your Hooks

If the built-in hooks provided by MMEngine do not cover your demands, you are encouraged to customize your own hooks by simply inheriting the base hook class and overriding the corresponding mount point methods.

For example, if you want to check whether the loss value is valid, i.e. not infinite, during training, you can simply override the after_train_iter method as below. The check will be performed after each training iteration.

import torch
from mmengine.registry import HOOKS
from mmengine.hooks import Hook
@HOOKS.register_module()
class CheckInvalidLossHook(Hook):
    """Check invalid loss hook.
    This hook will regularly check whether the loss is valid
    during training.
    Args:
        interval (int): Checking interval (every k iterations).
            Defaults to 50.
    """
    def __init__(self, interval=50):
        self.interval = interval
    def after_train_iter(self, runner, batch_idx, data_batch=None, outputs=None):
        """All subclasses should override this method, if they need any
        operations after each training iteration.
        Args:
            runner (Runner): The runner of the training process.
            batch_idx (int): The index of the current batch in the train loop.
            data_batch (dict or tuple or list, optional): Data from dataloader.
            outputs (dict, optional): Outputs from model.
        """
        if self.every_n_train_iters(runner, self.interval):
            assert torch.isfinite(outputs['loss']),\
                runner.logger.info('loss become infinite or NaN!')





We simply pass the hook config to the custom_hooks parameter of the Runner, which will register the hooks when the Runner is initialized.

from mmengine.runner import Runner
custom_hooks = [
    dict(type='CheckInvalidLossHook', interval=50)
]
runner = Runner(custom_hooks=custom_hooks, ...)
runner.train()  # start training





Then the loss value are checked after iteration.

Note that the priority of the custom hook is NORMAL (50) by default, if you want to change the priority of the hook, then you can set the priority key in the config.

custom_hooks = [
    dict(type='CheckInvalidLossHook', interval=50, priority='ABOVE_NORMAL')
]





You can also set priority when defining classes.

@HOOKS.register_module()
class CheckInvalidLossHook(Hook):
    priority = 'ABOVE_NORMAL'
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Registry

OpenMMLab supports a rich collection of algorithms and datasets, therefore, many modules with similar functionality are implemented. For example, the implementations of ResNet and SE-ResNet are based on the classes ResNet and SEResNet, respectively, which have similar functions and interfaces and belong to the model components of the algorithm library. To manage these functionally similar modules, MMEngine implements the registry. Most of the algorithm libraries in OpenMMLab use registry to manage their modules, including MMDetection [https://github.com/open-mmlab/mmdetection], MMDetection3D [https://github.com/open-mmlab/mmdetection3d], MMClassification [https://github.com/open-mmlab/mmclassification] and MMEditing [https://github.com/open-mmlab/mmediting], etc.


What is a registry

The registry in MMEngine can be considered as a union of a mapping table and a build function of modules. The mapping table maintains a mapping from strings to classes or functions, allowing the user to find the corresponding class or function with its name/notation. For example, the mapping from the string "ResNet" to the ResNet class. The module build function defines how to find the corresponding class or function based on a string and how to instantiate the class or call the function. For example, finding nn.BatchNorm2d and instantiating the BatchNorm2d module by the string "bn", or finding the build_batchnorm2d function by the string "build_batchnorm2d" and then returning the result. The registries in MMEngine use the build_from_cfg function by default to find and instantiate the class or function corresponding to the string.

The classes or functions managed by a registry usually have similar interfaces and functionality, so the registry can be treated as an abstraction of those classes or functions. For example, the registry MODELS can be treated as an abstraction of all models, which manages classes such as ResNet, SEResNet and RegNetX and constructors such as build_ResNet, build_SEResNet and build_RegNetX.



Getting started

There are three steps required to use the registry to manage modules in the codebase.


	Create a registry.


	Create a build method for instantiating the class (optional because in most cases you can just use the default method).


	Add the module to the registry




Suppose we want to implement a series of activation modules and want to be able to switch to different modules by just modifying the configuration without modifying the code.

Let’s create a registry first.

from mmengine import Registry
# `scope` represents the domain of the registry. If not set, the default value is the package name.
# e.g. in mmdetection, the scope is mmdet
# `locations` indicates the location where the modules in this registry are defined.
# The Registry will automatically import the modules when building them according to these predefined locations.
ACTIVATION = Registry('activation', scope='mmengine', locations=['mmengine.models.activations'])





The module mmengine.models.activations specified by locations corresponds to the mmengine/models/activations.py file. When building modules with registry, the ACTIVATION registry will automatically import implemented modules from this file. Therefore, we can implement different activation layers in the mmengine/models/activations.py file, such as Sigmoid, ReLU, and Softmax.

import torch.nn as nn

# use the register_module
@ACTIVATION.register_module()
class Sigmoid(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, x):
        print('call Sigmoid.forward')
        return x

@ACTIVATION.register_module()
class ReLU(nn.Module):
    def __init__(self, inplace=False):
        super().__init__()

    def forward(self, x):
        print('call ReLU.forward')
        return x

@ACTIVATION.register_module()
class Softmax(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, x):
        print('call Softmax.forward')
        return x





The key of using the registry module is to register the implemented modules into the ACTIVATION registry. With the @ACTIVATION.register_module() decorator added before the implemented module, the mapping between strings and classes or functions can be built and maintained by ACTIVATION. We can achieve the same functionality with ACTIVATION.register_module(module=ReLU) as well.

By registering, we can create a mapping between strings and classes or functions via ACTIVATION.

print(ACTIVATION.module_dict)
# {
#     'Sigmoid': __main__.Sigmoid,
#     'ReLU': __main__.ReLU,
#     'Softmax': __main__.Softmax
# }






Note

The key to trigger the registry mechanism is to make the module imported.
There are three ways to register a module into the registry


	Implement the module in the locations. The registry will automatically import modules in the predefined locations. This is to ease the usage of algorithm libraries so that users can directly use REGISTRY.build(cfg).


	Import the file manually. This is common when developers implement a new module in/out side the algorithm library.


	Use custom_imports field in config. Please refer to Importing custom Python modules for more details.






Once the implemented module is successfully registered, we can use the activation module in the configuration file.

import torch

input = torch.randn(2)

act_cfg = dict(type='Sigmoid')
activation = ACTIVATION.build(act_cfg)
output = activation(input)
# call Sigmoid.forward
print(output)





We can switch to ReLU by just changing this configuration.

act_cfg = dict(type='ReLU', inplace=True)
activation = ACTIVATION.build(act_cfg)
output = activation(input)
# call ReLU.forward
print(output)





If we want to check the type of input parameters (or any other operations) before creating an instance, we can implement a build method and pass it to the registry to implement a custom build process.

Create a build_activation function.

def build_activation(cfg, registry, *args, **kwargs):
    cfg_ = cfg.copy()
    act_type = cfg_.pop('type')
    print(f'build activation: {act_type}')
    act_cls = registry.get(act_type)
    act = act_cls(*args, **kwargs, **cfg_)
    return act





Pass the buid_activation to build_func.

ACTIVATION = Registry('activation', build_func=build_activation, scope='mmengine', locations=['mmengine.models.activations'])

@ACTIVATION.register_module()
class Tanh(nn.Module):
    def __init__(self):
        super().__init__()

    def forward(self, x):
        print('call Tanh.forward')
        return x

act_cfg = dict(type='Tanh')
activation = ACTIVATION.build(act_cfg)
output = activation(input)
# build activation: Tanh
# call Tanh.forward
print(output)






Note

In the above example, we demonstrate how to customize the method of building an instance of a class using the build_func.
This is similar to the default build_from_cfg method. In most cases, using the default method will be fine.



MMEngine’s registry can register classes as well as functions.

FUNCTION = Registry('function', scope='mmengine')

@FUNCTION.register_module()
def print_args(**kwargs):
    print(kwargs)

func_cfg = dict(type='print_args', a=1, b=2)
func_res = FUNCTION.build(func_cfg)







Advanced usage

The registry in MMEngine supports hierarchical registration, which enables cross-project calls, meaning that modules from one project can be used in another project. Though there are other ways to implement this, the registry provides a much easier solution.

To easily make cross-library calls, MMEngine provides twenty two root registries, including:


	RUNNERS: the registry for Runner.


	RUNNER_CONSTRUCTORS: the constructors for Runner.


	LOOPS: manages training, validation and testing processes, such as EpochBasedTrainLoop.


	HOOKS: the hooks, such as CheckpointHook, and ParamSchedulerHook.


	DATASETS: the datasets.


	DATA_SAMPLERS: Sampler of DataLoader, used to sample the data.


	TRANSFORMS: various data preprocessing methods, such as Resize, and Reshape.


	MODELS: various modules of the model.


	MODEL_WRAPPERS: model wrappers for parallelizing distributed data, such as MMDistributedDataParallel.


	WEIGHT_INITIALIZERS: the tools for weight initialization.


	OPTIMIZERS: registers all Optimizers and custom Optimizers in PyTorch.


	OPTIM_WRAPPER: the wrapper for Optimizer-related operations such as OptimWrapper, and AmpOptimWrapper.


	OPTIM_WRAPPER_CONSTRUCTORS: the constructors for optimizer wrappers.


	PARAM_SCHEDULERS: various parameter schedulers, such as MultiStepLR.


	METRICS: the evaluation metrics for computing model accuracy, such as Accuracy.


	EVALUATOR: one or more evaluation metrics used to calculate the model accuracy.


	TASK_UTILS: the task-intensive components, such as AnchorGenerator, and BboxCoder.


	VISUALIZERS: the management drawing module that draws prediction boxes on images, such as DetVisualizer.


	VISBACKENDS: the backend for storing training logs, such as LocalVisBackend, and TensorboardVisBackend.


	LOG_PROCESSORS: controls the log statistics window and statistics methods, by default we use LogProcessor. You may customize LogProcessor if you have special needs.


	FUNCTIONS: registers various functions, such as collate_fn in DataLoader.


	INFERENCERS: registers inferencers of different tasks, such as DetInferencer, which is used to perform inference on the detection task.





Use the module of the parent node

Let’s define a RReLU module in MMEngine and register it to the MODELS root registry.

import torch.nn as nn
from mmengine import Registry, MODELS

@MODELS.register_module()
class RReLU(nn.Module):
    def __init__(self, lower=0.125, upper=0.333, inplace=False):
        super().__init__()

    def forward(self, x):
        print('call RReLU.forward')
        return x





Now suppose there is a project called MMAlpha, which also defines a MODELS and sets its parent node to the MODELS of MMEngine, which creates a hierarchical structure.

from mmengine import Registry, MODELS as MMENGINE_MODELS

MODELS = Registry('model', parent=MMENGINE_MODELS, scope='mmalpha', locations=['mmalpha.models'])





The following figure shows the hierarchy of MMEngine and MMAlpha.


  


The count_registered_modules function can be used to print the modules that have been registered to MMEngine and their hierarchy.

from mmengine.registry import count_registered_modules

count_registered_modules()





We define a customized LogSoftmax module in MMAlpha and register it to the MODELS in MMAlpha.

@MODELS.register_module()
class LogSoftmax(nn.Module):
    def __init__(self, dim=None):
        super().__init__()

    def forward(self, x):
        print('call LogSoftmax.forward')
        return x





Here we use the LogSoftmax in the configuration of MMAlpha.

model = MODELS.build(cfg=dict(type='LogSoftmax'))





We can also use the modules of the parent node MMEngine here in the MMAlpha.

model = MODELS.build(cfg=dict(type='RReLU', lower=0.2))
# scope is optional
model = MODELS.build(cfg=dict(type='mmengine.RReLU'))





If no prefix is added, the build method will first find out if the module exists in the current node and return it if there is one. Otherwise, it will continue to look up the parent nodes or even the ancestor node until it finds the module. If the same module exists in both the current node and the parent nodes, we need to specify the scope prefix to indicate that we want to use the module of the parent nodes.

import torch

input = torch.randn(2)
output = model(input)
# call RReLU.forward
print(output)







Use the module of a sibling node

In addition to using the module of the parent nodes, users can also call the module of a sibling node.

Suppose there is another project called MMBeta, which, like MMAlpha, defines MODELS and set its parent node to MMEngine.

from mmengine import Registry, MODELS as MMENGINE_MODELS

MODELS = Registry('model', parent=MMENGINE_MODELS, scope='mmbeta')





The following figure shows the registry structure of MMAlpha and MMBeta.


  


Now we call the modules of MMAlpha in MMBeta.

model = MODELS.build(cfg=dict(type='mmalpha.LogSoftmax'))
output = model(input)
# call LogSoftmax.forward
print(output)





Calling a module of a sibling node requires the scope prefix to be specified in type, so the above configuration requires the prefix mmalpha.

However, if you need to call several modules of a sibling node, each with a prefix, this requires a lot of modification. Therefore, MMEngine introduces the DefaultScope, with which Registry can easily support temporary switching of the current node to the specified node.

If you need to switch the current node to the specified node temporarily, just set _scope_ to the scope of the specified node in cfg.

model = MODELS.build(cfg=dict(type='LogSoftmax', _scope_='mmalpha'))
output = model(input)
# call LogSoftmax.forward
print(output)
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Config

MMEngine implements an abstract configuration class (Config) to provide a unified configuration access interface for users. Config supports different type of configuration file, including python, json and yaml, and you can choose the type according to your preference. Config overrides some magic method, which could help you access the data stored in Config just like getting values from dict, or getting attributes from instances. Besides, Config also provides an inheritance mechanism, which could help you better organize and manage the configuration files.

Before starting the tutorial, let’s download the configuration files needed in the tutorial (it is recommended to execute them in a temporary directory to facilitate deleting these files latter.):

wget https://raw.githubusercontent.com/open-mmlab/mmengine/main/docs/resources/config/config_sgd.py
wget https://raw.githubusercontent.com/open-mmlab/mmengine/main/docs/resources/config/cross_repo.py
wget https://raw.githubusercontent.com/open-mmlab/mmengine/main/docs/resources/config/custom_imports.py
wget https://raw.githubusercontent.com/open-mmlab/mmengine/main/docs/resources/config/demo_train.py
wget https://raw.githubusercontent.com/open-mmlab/mmengine/main/docs/resources/config/example.py
wget https://raw.githubusercontent.com/open-mmlab/mmengine/main/docs/resources/config/learn_read_config.py
wget https://raw.githubusercontent.com/open-mmlab/mmengine/main/docs/resources/config/my_module.py
wget https://raw.githubusercontent.com/open-mmlab/mmengine/main/docs/resources/config/optimizer_cfg.py
wget https://raw.githubusercontent.com/open-mmlab/mmengine/main/docs/resources/config/predefined_var.py
wget https://raw.githubusercontent.com/open-mmlab/mmengine/main/docs/resources/config/replace_data_root.py
wget https://raw.githubusercontent.com/open-mmlab/mmengine/main/docs/resources/config/replace_num_classes.py
wget https://raw.githubusercontent.com/open-mmlab/mmengine/main/docs/resources/config/refer_base_var.py
wget https://raw.githubusercontent.com/open-mmlab/mmengine/main/docs/resources/config/resnet50_delete_key.py
wget https://raw.githubusercontent.com/open-mmlab/mmengine/main/docs/resources/config/resnet50_lr0.01.py
wget https://raw.githubusercontent.com/open-mmlab/mmengine/main/docs/resources/config/resnet50_runtime.py
wget https://raw.githubusercontent.com/open-mmlab/mmengine/main/docs/resources/config/resnet50.py
wget https://raw.githubusercontent.com/open-mmlab/mmengine/main/docs/resources/config/runtime_cfg.py
wget https://raw.githubusercontent.com/open-mmlab/mmengine/main/docs/resources/config/modify_base_var.py






Read the configuration file

Config provides a uniform interface Config.fromfile() to read and parse configuration files.

A valid configuration file should define a set of key-value pairs, and here are a few examples:

Python:

test_int = 1
test_list = [1, 2, 3]
test_dict = dict(key1='value1', key2=0.1)





Json:

{
  "test_int": 1,
  "test_list": [1, 2, 3],
  "test_dict": {"key1": "value1", "key2": 0.1}
}





YAML:

test_int: 1
test_list: [1, 2, 3]
test_dict:
  key1: "value1"
  key2: 0.1





For the above three formats, assuming the file names are config.py, config.json, and config.yml. Loading these files with Config.fromfile('config.xxx') will return the same result, which contain test_int, test_list and test_dict 3 variables.

Let’s take config.py as an example:

from mmengine.config import Config

cfg = Config.fromfile('learn_read_config.py')
print(cfg)





Config (path: learn_read_config.py): {'test_int': 1, 'test_list': [1, 2, 3], 'test_dict': {'key1': 'value1', 'key2': 0.1}}







How to use Config

After loading the configuration file, we can access the data stored in Config instance just like getting/setting values from dict, or getting/setting attributes from instances.

print(cfg.test_int)
print(cfg.test_list)
print(cfg.test_dict)
cfg.test_int = 2

print(cfg['test_int'])
print(cfg['test_list'])
print(cfg['test_dict'])
cfg['test_list'][1] = 3
print(cfg['test_list'])





1
[1, 2, 3]
{'key1': 'value1', 'key2': 0.1}
2
[1, 2, 3]
{'key1': 'value1', 'key2': 0.1}
[1, 3, 3]






Note

The dict object parsed by Config will be converted to ConfigDict, and then we can access the value of the dict the same as accessing the attribute of an instance.



We can use the Config combination with the Registry to build registered instance easily.

Here is an example of defining optimizers in a configuration file.

config_sgd.py:

optimizer = dict(type='SGD', lr=0.1, momentum=0.9, weight_decay=0.0001)





Suppose we have defined a registry OPTIMIZERS, which includes various optimizers. Then we can build the optimizer as below

from mmengine import Config, optim
from mmengine.registry import OPTIMIZERS

import torch.nn as nn

cfg = Config.fromfile('config_sgd.py')

model = nn.Conv2d(1, 1, 1)
cfg.optimizer.params = model.parameters()
optimizer = OPTIMIZERS.build(cfg.optimizer)
print(optimizer)





SGD (
Parameter Group 0
    dampening: 0
    foreach: None
    lr: 0.1
    maximize: False
    momentum: 0.9
    nesterov: False
    weight_decay: 0.0001
)







Inheritance between configuration files

Sometimes, the difference between two different configuration files is so small that only one field may be changed. Therefore, it’s unwise to copy and paste everything only to modify one line, which makes it hard for us to locate the specific difference after a long time.

In another case, multiple configuration files may have the same batch of fields, and we have to copy and paste them in different configuration files. It will also be hard to maintain these fields in a long time.

We address these issues with inheritance mechanism, detailed as below.


Overview of inheritance mechanism

Here is an example to illustrate the inheritance mechanism.

optimizer_cfg.py:

optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)





resnet50.py:

_base_ = ['optimizer_cfg.py']
model = dict(type='ResNet', depth=50)





Although we don’t define optimizer in resnet50.py, since we wrote _base_ = ['optimizer_cfg.py'], it will inherit the fields defined in optimizer_cfg.py.

cfg = Config.fromfile('resnet50.py')
print(cfg.optimizer)





{'type': 'SGD', 'lr': 0.02, 'momentum': 0.9, 'weight_decay': 0.0001}





_base_ is a reserved field for the configuration file. It specifies the inherited base files for the current file. Inheriting multiple files will get all the fields at the same time, but it requires that there are no repeated fields defined in all base files.

runtime_cfg.py:

gpu_ids = [0, 1]





resnet50_runtime.py:

_base_ = ['optimizer_cfg.py', 'runtime_cfg.py']
model = dict(type='ResNet', depth=50)





In this case, reading the resnet50_runtime.py will give you 3 fields model, optimizer, and gpu_ids.

cfg = Config.fromfile('resnet50_runtime.py')
print(cfg.optimizer)





{'type': 'SGD', 'lr': 0.02, 'momentum': 0.9, 'weight_decay': 0.0001}





By this way, we can disassemble the configuration file, define some general configuration files, and inherit them in the specific configuration file. This could avoid defining a lot of duplicated contents in multiple configuration files.



Modify the inherited fields

Sometimes, we want to modify some of the fields in the inherited files. For example we want to modify the learning rate from 0.02 to 0.01 after inheriting optimizer_cfg.py.

In this case, you can simply redefine the fields in the new configuration file. Note that since the optimizer field is a dictionary, we only need to redefine the modified fields. This rule also applies to adding fields.

resnet50_lr0.01.py:

_base_ = ['optimizer_cfg.py', 'runtime_cfg.py']
model = dict(type='ResNet', depth=50)
optimizer = dict(lr=0.01)





After reading this configuration file, you can get the desired result.

cfg = Config.fromfile('resnet50_lr0.01.py')
print(cfg.optimizer)





{'type': 'SGD', 'lr': 0.01, 'momentum': 0.9, 'weight_decay': 0.0001}





For non-dictionary fields, such as integers, strings, lists, etc., they can be completely overwritten by redefining them. For example, the code block below will change the value of the gpu_ids to [0].

_base_ = ['optimizer_cfg.py', 'runtime_cfg.py']
model = dict(type='ResNet', depth=50)
gpu_ids = [0]







Delete key in dict

Sometimes we not only want to modify or add the keys, but also want to delete them. In this case, we need to set _delete_=True in the target field(dict) to delete all the keys that do not appear in the newly defined dictionary.

resnet50_delete_key.py:

_base_ = ['optimizer_cfg.py', 'runtime_cfg.py']
model = dict(type='ResNet', depth=50)
optimizer = dict(_delete_=True, type='SGD', lr=0.01)





At this point, optimizer will only have the keys type and lr. momentum and weight_decay will no longer exist.

cfg = Config.fromfile('resnet50_delete_key.py')
print(cfg.optimizer)





{'type': 'SGD', 'lr': 0.01}







Reference of the inherited file

Sometimes we want to reuse the field defined in _base_, we can get a copy of the corresponding variable by using {{_base_.xxxx}}:

refer_base_var.py

_base_ = ['resnet50.py']
a = {{_base_.model}}





After parsing, the value of a becomes model defined in resnet50.py

cfg = Config.fromfile('refer_base_var.py')
print(cfg.a)





{'type': 'ResNet', 'depth': 50}





We can use this way to get the variables defined in _base_ in the json, yaml, and python configuration files.

Although this way is general for all types of files, there are some syntactic limitations that prevent us from taking full advantage of the dynamic nature of the python configuration file. For example, if we want to modify a variable defined in _base_:

_base_ = ['resnet50.py']
a = {{_base_.model}}
a['type'] = 'MobileNet'





The Config is not able to parse such a configuration file (it will raise an error when parsing). The Config provides a more pythonic way to modify base variables for python configuration files.

modify_base_var.py:

_base_ = ['resnet50.py']
a = _base_.model
a.type = 'MobileNet'





cfg = Config.fromfile('modify_base_var.py')
print(cfg.a)





{'type': 'MobileNet', 'depth': 50}








Dump the configuration file

The user may pass some parameters to modify some fields of the configuration file at the entry point of the training script. Therefore, we provide the dump method to export the changed configuration file.

Similar to reading the configuration file, the user can choose the format of the dumped file by using cfg.dump('config.xxx'). dump can also export configuration files with inheritance relationships, and the dumped files can be used independently without the files defined in _base_.

Based on the resnet50.py defined above, we can load and dump it like this:

cfg = Config.fromfile('resnet50.py')
cfg.dump('resnet50_dump.py')





resnet50_dump.py

optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
model = dict(type='ResNet', depth=50)





Similarly, we can dump configuration files in json, yaml format:

resnet50_dump.yaml

model:
  depth: 50
  type: ResNet
optimizer:
  lr: 0.02
  momentum: 0.9
  type: SGD
  weight_decay: 0.0001





resnet50_dump.json

{"optimizer": {"type": "SGD", "lr": 0.02, "momentum": 0.9, "weight_decay": 0.0001}, "model": {"type": "ResNet", "depth": 50}}





In addition, dump can also dump cfg loaded from a dictionary.

cfg = Config(dict(a=1, b=2))
cfg.dump('dump_dict.py')





dump_dict.py

a=1
b=2







Advanced usage

In this section, we’ll introduce some advanced usage of the Config, and some tips that could make it easier for users to develop and use downstream repositories.


Predefined fields

Sometimes we need some fields in the configuration file, which are related to the path to the workspace. For example, we define a working directory in the configuration file that holds the models and logs for this set of experimental configurations. We expect to have different working directories for different configuration files. A common choice is to use the configuration file name directly as part of the working directory name.
Taking predefined_var.py as an example:

work_dir = './work_dir/{{fileBasenameNoExtension}}'





Here {{fileBasenameNoExtension}} means the filename without suffix .py of the config file, and the variable in {{}} will be interpreted as predefined_var

cfg = Config.fromfile('./predefined_var.py')
print(cfg.work_dir)





./work_dir/predefined_var





Currently, there are 4 predefined fields referenced from the relevant fields defined in VS Code [https://code.visualstudio.com/docs/editor/variables-reference].


	{{fileDirname}} - the directory name of the current file, e.g. /home/your-username/your-project/folder


	{{fileBasename}} - the filename of the current file, e.g. file.py


	{{fileBasenameNoExtension}} - the filename of the current file without the extension, e.g. file


	{{fileExtname}} - the extension of the current file, e.g. .py






Modify the fields in command line

Sometimes we only want to modify part of the configuration and do not want to modify the configuration file itself. For example, if we want to change the learning rate during the experiment but do not want to write a new configuration file, the common practice is to pass the parameters at the command line to override the relevant configuration.

If we want to modify some internal parameters, such as the learning rate of the optimizer, the number of channels in the convolution layer etc., Config provides a standard procedure that allows us to modify the parameters at any level easily from the command line.

Training script:

demo_train.py

import argparse

from mmengine.config import Config, DictAction


def parse_args():
    parser = argparse.ArgumentParser(description='Train a model')
    parser.add_argument('config', help='train config file path')
    parser.add_argument(
        '--cfg-options',
        nargs='+',
        action=DictAction,
        help='override some settings in the used config, the key-value pair '
        'in xxx=yyy format will be merged into config file. If the value to '
        'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
        'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
        'Note that the quotation marks are necessary and that no white space '
        'is allowed.')

    args = parser.parse_args()
    return args


def main():
    args = parse_args()
    cfg = Config.fromfile(args.config)
    if args.cfg_options is not None:
        cfg.merge_from_dict(args.cfg_options)
    print(cfg)


if __name__ == '__main__':
    main()





The sample configuration file is as follows.

example.py

model = dict(type='CustomModel', in_channels=[1, 2, 3])
optimizer = dict(type='SGD', lr=0.01)





We can modify the internal fields from the command line by . For example, if we want to modify the learning rate, we only need to execute the script like this:

python demo_train.py ./example.py --cfg-options optimizer.lr=0.1





Config (path: ./example.py): {'model': {'type': 'CustomModel', 'in_channels': [1, 2, 3]}, 'optimizer': {'type': 'SGD', 'lr': 0.1}}





We successfully modified the learning rate from 0.01 to 0.1. If we want to change a list or a tuple, such as in_channels in the above example. We need to put double quotes around (), [] when assigning the value on the command line.

python demo_train.py ./example.py --cfg-options model.in_channels="[1, 1, 1]"





Config (path: ./example.py): {'model': {'type': 'CustomModel', 'in_channels': [1, 1, 1]}, 'optimizer': {'type': 'SGD', 'lr': 0.01}}






Note

The standard procedure only supports modifying String, Integer, Floating Point, Boolean, None, List, and Tuple fields from the command line. For the elements of list and tuple instance, each of them must be one of the above seven types.




Note

The behavior of DictAction is similar with "extend". It stores a list, and extends each argument value to the list, like:

python demo_train.py ./example.py --cfg-options optimizer.type="Adam" --cfg-options model.in_channels="[1, 1, 1]"





Config (path: ./example.py): {'model': {'type': 'CustomModel', 'in_channels': [1, 1, 1]}, 'optimizer': {'type': 'Adam', 'lr': 0.01}}









Replace fields with environment variables

When a field is deeply nested, we need to add a long prefix at the command line to locate it. To alleviate this problem, MMEngine allows users to substitute fields in configuration with environment variables.

Before parsing the configuration file, the program will search all {{$ENV_VAR:DEF_VAL}} fields and substitute those sections with environment variables. Here, ENV_VAR is the name of the environment variable used to replace this section, DEF_VAL is the default value if ENV_VAR is not set.

When we want to modify the dataset path at the command line, we can take replace_data_root.py as an example:

dataset_type = 'CocoDataset'
data_root = '{{$DATASET:/data/coco/}}'
dataset=dict(ann_file= data_root + 'train.json')





If we run demo_train.py to parse this configuration file.

python demo_train.py replace_data_root.py





Config (path: replace_data_root.py): {'dataset_type': 'CocoDataset', 'data_root': '/data/coco/', 'dataset': {'ann_file': '/data/coco/train.json'}}





Here, we don’t set the environment variable DATASET. Thus, the program directly replaces {{$DATASET:/data/coco/}} with the default value /data/coco/. If we set DATASET at the command line:

DATASET=/new/dataset/path/ python demo_train.py replace_data_root.py





Config (path: replace_data_root.py): {'dataset_type': 'CocoDataset', 'data_root': '/new/dataset/path/', 'dataset': {'ann_file': '/new/dataset/path/train.json'}}





The value of data_root has been substituted with the value of DATASET as /new/dataset/path.

It is noteworthy that both --cfg-options and {{$ENV_VAR:DEF_VAL}} allow users to modify fields in command line. But there is a small difference between those two methods. Environment variable substitution occurs before the configuration parsing. If the replaced field is also involved in other fields assignment, the environment variable substitution will also affect the other fields.

We take demo_train.py and replace_data_root.py for example. If we replace data_root by setting --cfg-options data_root='/new/dataset/path':

python demo_train.py replace_data_root.py --cfg-options data_root='/new/dataset/path/'





Config (path: replace_data_root.py): {'dataset_type': 'CocoDataset', 'data_root': '/new/dataset/path/', 'dataset': {'ann_file': '/data/coco/train.json'}}





As we can see, only data_root has been modified. dataset.ann_file is still the default value.

In contrast, if we replace data_root by setting DATASET=/new/dataset/path:

DATASET=/new/dataset/path/ python demo_train.py replace_data_root.py





Config (path: replace_data_root.py): {'dataset_type': 'CocoDataset', 'data_root': '/new/dataset/path/', 'dataset': {'ann_file': '/new/dataset/path/train.json'}}





Both data_root and dataset.ann_file have been modified.

Environment variables can also be used to replace other types of fields. We can use {{'$ENV_VAR:DEF_VAL'}} or {{"$ENV_VAR:DEF_VAL"}} format to ensure the configuration file conforms to python syntax.

We can take replace_num_classes.py as an example:

model=dict(
    bbox_head=dict(
        num_classes={{'$NUM_CLASSES:80'}}))





If we run demo_train.py to parse this configuration file.

python demo_train.py replace_num_classes.py





Config (path: replace_num_classes.py): {'model': {'bbox_head': {'num_classes': 80}}}





Let us set the environment variable NUM_CLASSES

NUM_CLASSES=20 python demo_train.py replace_num_classes.py





Config (path: replace_num_classes.py): {'model': {'bbox_head': {'num_classes': 20}}}







import the custom module

If we customize a module and register it into the corresponding registry, could we directly build it from the configuration file as the previous section does? The answer is “I don’t know” since I’m not sure the registration process has been triggered. To solve this “unknown” case, Config provides the custom_imports function, to make sure your module could be registered as expected.

For example, we customize an optimizer:

from mmengine.registry import OPTIMIZERS

@OPTIMIZERS.register_module()
class CustomOptim:
    pass





A matched config file:

my_module.py

optimizer = dict(type='CustomOptim')





To make sure CustomOptim will be registered, we should set the custom_imports field like this:

custom_imports.py

custom_imports = dict(imports=['my_module'], allow_failed_imports=False)
optimizer = dict(type='CustomOptim')





And then, once the custom_imports can be loaded successfully, we can build the CustomOptim from the custom_imports.py.

cfg = Config.fromfile('custom_imports.py')

from mmengine.registry import OPTIMIZERS

custom_optim = OPTIMIZERS.build(cfg.optimizer)
print(custom_optim)





<my_module.CustomOptim object at 0x7f6983a87970>







Inherit configuration files across repository

It is annoying to copy a large number of configuration files when developing a new repository based on some existing repositories. To address this issue, Config support inherit configuration files from other repositories. For example, based on MMDetection, we want to develop a repository, we can use the MMDetection configuration file like this:

cross_repo.py

_base_ = [
    'mmdet::_base_/schedules/schedule_1x.py',
    'mmdet::_base_/datasets/coco_instance.py',
    'mmdet::_base_/default_runtime.py',
    'mmdet::_base_/models/faster_rcnn_r50_fpn.py',
]





cfg = Config.fromfile('cross_repo.py')
print(cfg.train_cfg)





{'type': 'EpochBasedTrainLoop', 'max_epochs': 12, 'val_interval': 1, '_scope_': 'mmdet'}





Config will parse mmdet:: to find mmdet package and inherits the specified configuration file. Actually, as long as the setup.py of the repository(package) conforms to MMEngine Installation specification, Config can use {package_name}:: to inherit the specific configuration file.



Get configuration files across repository

Config also provides get_config and get_model to get the configuration file and the trained model from the downstream repositories.

The usage of get_config and get_model are similar to the previous section:

An example of get_config:

from mmengine.hub import get_config

cfg = get_config(
    'mmdet::faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py', pretrained=True)
print(cfg.model_path)





https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth





An example of get_model:

from mmengine.hub import get_model

model = get_model(
    'mmdet::faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py', pretrained=True)
print(type(model))





http loads checkpoint from path: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth
<class 'mmdet.models.detectors.faster_rcnn.FasterRCNN'>










            

          

      

      

    

  

  
    
    

    BaseDataset
    

    

    

    
 
  

    
      
          
            
  
BaseDataset


Introduction

The Dataset class in the algorithm toolbox is responsible for providing input data for the model during the training/testing process. The Dataset class in each algorithm toolbox under OpenMMLab projects has some common characteristics and requirements, such as the need for efficient internal data storage format, support for the concatenation of different datasets, dataset repeated sampling, and so on.

Therefore, MMEngine implements BaseDataset which provides some basic interfaces and implements some DatasetWrappers with the same interfaces. Most of the Dataset Classes in the OpenMMLab algorithm toolbox meet the interface defined by the BaseDataset and use the same DatasetWrappers.

The basic function of the BaseDataset is to load the dataset information. Here, we divide the dataset information into two categories. One is meta information, which represents the information related to the dataset itself and sometimes needs to be obtained by the model or other external components. For example, the meta information of the dataset generally includes the category information classes in the image classification task, since the classification model usually needs to record the category information of the dataset. The other is data information, which defines the file path and corresponding label information of specific data info. In addition, another function of the BaseDataset is to continuously send data into the data pipeline for data preprocessing.


The standard data annotation file

In order to unify the dataset interface of different tasks and facilitate multiple tasks training in one model, OpenMMLab formulate the OpenMMLab 2.0 dataset format specification. Dataset annotation files should conform to this specification, and the BaseDataset reads and parses data annotation files based on this specification. If the data annotation file provided by the user does not conform to the specified format, the user can choose to convert it to the specified format and use OpenMMLab’s algorithm toolbox to conduct algorithm training and testing based on the converted data annotation file.

The OpenMMLab 2.0 dataset format specification states that annotation files must be in the format of json or yaml, yml or pickle, pkl. The dictionary stored in the annotation file must contain two fields, metainfo and data_list. The metainfo is a dictionary containing meta information about the dataset. The data_list is a list in which each element is a dictionary and the dictionary defines a raw data info. Each raw data info contains one or more training/test samples.

Here is an example of a JSON annotation file (where each raw data info contains only one training/test sample):

{
    "metainfo":
        {
            "classes": ["cat", "dog"]
        },
    "data_list":
        [
            {
                "img_path": "xxx/xxx_0.jpg",
                "img_label": 0
            },
            {
                "img_path": "xxx/xxx_1.jpg",
                "img_label": 1
            }
        ]
}





We assume that the data is stored in the following path:

data
├── annotations
│   ├── train.json
├── train
│   ├── xxx/xxx_0.jpg
│   ├── xxx/xxx_1.jpg
│   ├── ...







The initialization process of the BaseDataset

The initialization process of the BaseDataset is shown as follows:


  



	load metainfo: Obtain the meta information of the dataset. The meta information can be obtained from three sources with the priority from high to low:





	The dict of metainfo passed by the user in the __init__() function. The priority is high since the user can pass this argument when the BaseDataset is instantiated;


	The dict of BaseDataset.METAINFO in the class attributes of BaseDataset. The priority is medium since the user can change the class attributes BaseDataset.METAINFO in the custom dataset class;


	The dict of metainfo included in the annotation file. The priority is low since the annotation file is generally not changed.




If three sources have the same field, the source with the highest priority determines the value of the field. The priority comparison of these fields is: The fields in the metainfo dictionary passed by the user > The fields in the BaseDataset.METAINFO of BaseDataset > the fields in the metainfo of annotation file.


	join path: Process the path of datainfo and annotating files;


	build pipeline: Build data pipeline for the data preprocessing and data preparation;


	full init: Fully initializes the BaseDataset. This step mainly includes the following operations:





	load data list: Read and parse the annotation files that meet the OpenMMLab 2.0 dataset format specification. In this step, the parse_data_info() method is called. This method is responsible for parsing each raw data info in the annotation file;


	filter data (optional): Filters unnecessary data based on filter_cfg, such as data samples that do not contain annotations. By default, there is no filtering operation, and downstream subclasses can override it according to their own needs.


	get subset (optional): Sample a subset of dataset based on a given index or an integer value, such as only the first 10 samples for training/testing. By default, all data samples are used.


	serialize data (optional): Serialize all data samples to save memory. Please see Save memory for more details. we serialize all data samples by default.




The parse_data_info() method in the BaseDataset is used to process a raw data info in the annotation file into one or more training/test data samples. The user needs to implement the parse_data_info() method if they want to customize dataset class.



The interface of BaseDataset

Once the BaseDataset is initialized, it supports __getitem__ method to index a data info and __len__ method to get the length of dataset, just like torch.utils.data.Dataset. The Basedataset provides the following interfaces:


	metainfo: Return the meta information with a dictionary value.


	get_data_info(idx): Return the full data information of the given idx, and the return value is a dictionary.


	__getitem__(idx): Return the results of data pipeline(The input data of model) of the given ‘idx’, and the return value is a dictionary.


	__len__(): Return the length of the dataset. The return value is an integer.


	get_subset_(indices): Modify the original dataset class in inplace according to indices. If indices is int, then the original dataset class contains only the first few data samples. If indices is Sequence[int], the raw dataset class contains data samples specified according to Sequence[int].


	get_subset(indices): Return a new sub-dataset class according to indices, i.e., re-copies a sub-dataset. If indices is int, the returned sub-dataset object contains only the first few data samples. If indices is Sequence[int], the returned sub-dataset object contains the data samples specified according to Sequence[int].







Customize dataset class based on BaseDataset

We can customize the dataset class based on BaseDataset, after we understand the initialization process of BaseDataset and the provided interfaces of BaseDataset.


Annotation files that meet the OpenMMLab 2.0 dataset format specification

As mentioned above, users can overload parse_data_info() to load annotation files that meet the OpenMMLab 2.0 dataset format specification. Here is an example of using BaseDataset to implement a specific dataset.

import os.path as osp

from mmengine.dataset import BaseDataset


class ToyDataset(BaseDataset):

    # Take the above annotation file as example. The raw_data_info represents a dictionary in the data_list list:
    # {
    #    'img_path': "xxx/xxx_0.jpg",
    #    'img_label': 0,
    #    ...
    # }
    def parse_data_info(self, raw_data_info):
        data_info = raw_data_info
        img_prefix = self.data_prefix.get('img_path', None)
        if img_prefix is not None:
            data_info['img_path'] = osp.join(
                img_prefix, data_info['img_path'])
        return data_info







Using Customized dataset class

The ToyDataset can be instantiated with the following configuration, once it has been defined:


class LoadImage:

    def __call__(self, results):
        results['img'] = cv2.imread(results['img_path'])
        return results

class ParseImage:

    def __call__(self, results):
        results['img_shape'] = results['img'].shape
        return results

pipeline = [
    LoadImage(),
    ParseImage(),
]

toy_dataset = ToyDataset(
    data_root='data/',
    data_prefix=dict(img_path='train/'),
    ann_file='annotations/train.json',
    pipeline=pipeline)





At the same time, the external interface provided by the BaseDataset can be used to access specific data sample information:

toy_dataset.metainfo
# dict(classes=('cat', 'dog'))

toy_dataset.get_data_info(0)
# {
#     'img_path': "data/train/xxx/xxx_0.jpg",
#     'img_label': 0,
#     ...
# }

len(toy_dataset)
# 2

toy_dataset[0]
# {
#     'img_path': "data/train/xxx/xxx_0.jpg",
#     'img_label': 0,
#     'img': a ndarray with shape (H, W, 3), which denotes the value of the image,
#     'img_shape': (H, W, 3) ,
#     ...
# }

# The `get_subset` interface does not modify the original dataset class, i.e. make a complete copy of it
sub_toy_dataset = toy_dataset.get_subset(1)
len(toy_dataset), len(sub_toy_dataset)
# 2, 1

# The `get_subset_` interface modify the original dataset class in inplace
toy_dataset.get_subset_(1)
len(toy_dataset)
# 1





Following the above steps, we can see how to customize a dataset based on the BaseDataset and how to use the customized dataset.



Customize dataset for videos

In the above examples, each raw data info of the annotation file contains only one training/test sample (usually in the image field). If each raw data info contains several training/test samples (usually in the video domain), we only need to ensure that the return value of parse_data_info() is list[dict]:

from mmengine.dataset import BaseDataset


class ToyVideoDataset(BaseDataset):

    # raw_data_info is still a dict, but it contains multiple samples
    def parse_data_info(self, raw_data_info):
        data_list = []

        ...

        for ... :

            data_info = dict()

            ...

            data_list.append(data_info)

        return data_list






The usage of ToyVideoDataset is similar to that of ToyDataset, which will not be repeated here.




Annotation files that do not meet the OpenMMLab 2.0 dataset format specification

For annotated files that do not meet the OpenMMLab 2.0 dataset format specification, there are two ways to use:


	Convert the annotation files that do not meet the specifications into the annotation files that do meet the specifications, and then use the BaseDataset in the above way.


	Implement a new dataset class that inherits from the BaseDataset and overloads the load_data_list(self): function of the BaseDataset to handle annotation files that don’t meet the specification and guarantee a return value of list[dict], where each dict represents a data sample.







Other features of BaseDataset

The BaseDataset also contains the following features:


lazy init

When the BaseDataset is instantiated, the annotation file needs to be read and parsed, therefore it will take some time. However, in some cases, such as the visualization of prediction, only the meta information of the BaseDataset is required, and reading and parsing the annotation file may not be necessary. To save time on instantiating the BaseDataset in this case, the BaseDataset supports lazy init:

pipeline = [
    LoadImage(),
    ParseImage(),
]

toy_dataset = ToyDataset(
    data_root='data/',
    data_prefix=dict(img_path='train/'),
    ann_file='annotations/train.json',
    pipeline=pipeline,
    # Pass the lazy_init variable in here
    lazy_init=True)





When lazy_init=True, the initialization of ToyDataset’s only performs steps 1, 2, and 3 of the BaseDataset initialization process. At this time, toy_dataset was not fully initialized, since toy_dataset will not read and parse the annotation file. The toy_dataset only set the meta information of the dataset (metainfo).

Naturally, if you need to access specific data information later, you can manually call the toy_dataset.full_init() interface to perform the complete initialization process, during which the data annotation file will be read and parsed. Calling the get_data_info (independence idx), __len__ (), __getitem__ (independence idx),  get_subset_ (indices) and get_subset(indices) interface will also automatically call the full_init() interface to perform the full initialization process (only on the first call, later calls will not call the full_init() interface repeatedly):

# Full initialization
toy_dataset.full_init()

# After initialization, you can now get the data info
len(toy_dataset)
# 2
toy_dataset[0]
# {
#     'img_path': "data/train/xxx/xxx_0.jpg",
#     'img_label': 0,
#     'img': a ndarray with shape (H, W, 3), which denotes the value the image,
#     'img_shape': (H, W, 3) ,
#     ...
# }





Notice:

Performing full initialization by calling the __getitem__() interface directly carries some risks: If a dataset object is not fully initialized by setting lazy_init=True firstly, then it is directly sent to the dataloader. Different dataloader workers will read and parse the annotation file at the same time in the subsequent data reading process. Although this may work normally, it consumes a lot of time and memory. Therefore, it is recommended to manually call the full_init() interface to perform the full initialization process before you need to access specific data.

The above is not fully initialized by setting lazy_init=True, and then complete initialization according to the demand, called lazy init.



Save memory

In the specific process of reading data, the dataloader will usually prefetch data from multiple dataloader workers, and multiple workers have complete dataset object backup, so there will be multiple copies of the same data_list in the memory. In order to save this part of memory consumption, The BaseDataset can serialize data_list into memory in advance, so that multiple workers can share the same copy of data_list, so as to save memory.

By default, the BaseDataset stores the serialization of data_list into memory. It is also possible to control whether the data will be serialized into memory ahead of time by using the  serialize_data argument (default is True) :

pipeline = [
    LoadImage(),
    ParseImage(),
]

toy_dataset = ToyDataset(
    data_root='data/',
    data_prefix=dict(img_path='train/'),
    ann_file='annotations/train.json',
    pipeline=pipeline,
    # Pass the serialize data argument in here
    serialize_data=False)





The above example does not store the data_list serialization into memory in advance, so it is not recommended to instantiate the dataset class, when using the dataloader to open multiple dataloader workers to load the data.




DatasetWrappers

In addition to BaseDataset, MMEngine also provides several DatasetWrappers: ConcatDataset, RepeatDataset, ClassBalancedDataset. These dataset wrappers also support lazy init and have memory-saving features.


ConcatDataset

MMEngine provides a ConcatDataset wrapper to concatenate datasets in the following way:

from mmengine.dataset import ConcatDataset

pipeline = [
    LoadImage(),
    ParseImage(),
]

toy_dataset_1 = ToyDataset(
    data_root='data/',
    data_prefix=dict(img_path='train/'),
    ann_file='annotations/train.json',
    pipeline=pipeline)

toy_dataset_2 = ToyDataset(
    data_root='data/',
    data_prefix=dict(img_path='val/'),
    ann_file='annotations/val.json',
    pipeline=pipeline)

toy_dataset_12 = ConcatDataset(datasets=[toy_dataset_1, toy_dataset_2])






The above example combines the train set and the val set of the dataset into one large dataset.



RepeatDataset

MMEngine provides RepeatDataset wrapper to repeat a dataset several times, as follows:

from mmengine.dataset import RepeatDataset

pipeline = [
    LoadImage(),
    ParseImage(),
]

toy_dataset = ToyDataset(
    data_root='data/',
    data_prefix=dict(img_path='train/'),
    ann_file='annotations/train.json',
    pipeline=pipeline)

toy_dataset_repeat = RepeatDataset(dataset=toy_dataset, times=5)






The above example samples the train set of the dataset five times.



ClassBalancedDataset

MMEngine provides ClassBalancedDataset wrapper to repeatedly sample the corresponding samples based on the frequency of category occurrence in the dataset.

Notice:

The ClassBalancedDataset wrapper assumes that the wrapped dataset class supports the get_cat_ids(idx) method, which returns a list. The list contains the categories of  data_info given by ‘idx’. The usage is as follows:

from mmengine.dataset import BaseDataset, ClassBalancedDataset

class ToyDataset(BaseDataset):

    def parse_data_info(self, raw_data_info):
        data_info = raw_data_info
        img_prefix = self.data_prefix.get('img_path', None)
        if img_prefix is not None:
            data_info['img_path'] = osp.join(
                img_prefix, data_info['img_path'])
        return data_info

    # The necessary method that needs to return the category of data sample
    def get_cat_ids(self, idx):
        data_info = self.get_data_info(idx)
        return [int(data_info['img_label'])]

pipeline = [
    LoadImage(),
    ParseImage(),
]

toy_dataset = ToyDataset(
    data_root='data/',
    data_prefix=dict(img_path='train/'),
    ann_file='annotations/train.json',
    pipeline=pipeline)

toy_dataset_repeat = ClassBalancedDataset(dataset=toy_dataset, oversample_thr=1e-3)






The above example resamples the train set of the dataset with oversample_thr=1e-3. Specifically, for categories whose frequency is less than 1e-3 in the dataset, samples corresponding to this category will be sampled repeatedly; otherwise, samples will not be sampled repeatedly. Please refer to the API documentation of ClassBalancedDataset for specific sampling policies.



Customize DatasetWrapper

Since the BaseDataset support lazy init, some rules need to be followed when customizing the DatasetWrapper. Here is an example to show how to customize the DatasetWrapper:

from mmengine.dataset import BaseDataset
from mmengine.registry import DATASETS


@DATASETS.register_module()
class ExampleDatasetWrapper:

    def __init__(self, dataset, lazy_init=False, ...):
        # Build the source dataset (self.dataset)
        if isinstance(dataset, dict):
            self.dataset = DATASETS.build(dataset)
        elif isinstance(dataset, BaseDataset):
            self.dataset = dataset
        else:
            raise TypeError(
                'elements in datasets sequence should be config or '
                f'`BaseDataset` instance, but got {type(dataset)}')
        # Record the meta information of source dataset
        self._metainfo = self.dataset.metainfo

        '''
        1. Implement some code here to record some of the hyperparameters used to wrap the dataset.
        '''

        self._fully_initialized = False
        if not lazy_init:
            self.full_init()

    def full_init(self):
        if self._fully_initialized:
            return

        # Initialize the source dataset completely
        self.dataset.full_init()

        '''
        2. Implement some code here to wrap the source dataset.
        '''

        self._fully_initialized = True

    @force_full_init
    def _get_ori_dataset_idx(self, idx: int):

        '''
        3. Implement some code here to map the wrapped index `idx` to the index of the source dataset 'ori_idx'.
        '''
        ori_idx = ...

        return ori_idx

    # Provide the same external interface as `self.dataset `.
    @force_full_init
    def get_data_info(self, idx):
        sample_idx = self._get_ori_dataset_idx(idx)
        return self.dataset.get_data_info(sample_idx)

    # Provide the same external interface as `self.dataset `.
    def __getitem__(self, idx):
        if not self._fully_initialized:
            warnings.warn('Please call `full_init` method manually to '
                          'accelerate the speed.')
            self.full_init()

        sample_idx = self._get_ori_dataset_idx(idx)
        return self.dataset[sample_idx]

    # Provide the same external interface as `self.dataset `.
    @force_full_init
    def __len__(self):

        '''
        4. Implement some code here to calculate the length of the wrapped dataset.
        '''
        len_wrapper = ...

        return len_wrapper

    # Provide the same external interface as `self.dataset `.
    @property
    def metainfo(self)
        return copy.deepcopy(self._metainfo)
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Data transform

In the OpenMMLab repositories, dataset construction and data preparation are decoupled from each other.
Usually, the dataset construction only parses the dataset and records the basic information of each sample,
while the data preparation is performed by a series of data transforms, such as data loading, preprocessing,
and formatting based on the basic information of the samples.


To use Data Transforms

In MMEngine, we use various callable data transforms classes to perform data manipulation. These data
transformation classes can accept several configuration parameters for instantiation and then process the
input data dictionary by calling. Also, all data transforms accept a dictionary as input and output the
processed data as a dictionary. A simple example is as belows:


Note

In MMEngine, we don’t have the implementations of data transforms. you can find the base data transform class
and many other data transforms in MMCV. So you need to install MMCV before learning this tutorial, see the
MMCV installation guide [https://mmcv.readthedocs.io/en/2.x/get_started/installation.html].



>>> import numpy as np
>>> from mmcv.transforms import Resize
>>>
>>> transform = Resize(scale=(224, 224))
>>> data_dict = {'img': np.random.rand(256, 256, 3)}
>>> data_dict = transform(data_dict)
>>> print(data_dict['img'].shape)
(224, 224, 3)







To use in Config Files

In config files, we can compose multiple data transforms as a list, called a data pipeline. And the data
pipeline is an argument of the dataset.

Usually, a data pipeline consists of the following parts:


	Data loading, use LoadImageFromFile [https://mmcv.readthedocs.io/en/2.x/api/generated/mmcv.transforms.LoadImageFromFile.html#mmcv.transforms.LoadImageFromFile] to load image files.


	Label loading, use LoadAnnotations [https://mmcv.readthedocs.io/en/2.x/api/generated/mmcv.transforms.LoadAnnotations.html#mmcv.transforms.LoadAnnotations] to load the bboxes, semantic segmentation and keypoint annotations.


	Data processing and augmentation, like RandomResize [https://mmcv.readthedocs.io/en/2.x/api/generated/mmcv.transforms.RandomResize.html#mmcv.transforms.RandomResize].


	Data formatting, we use different data transforms for different tasks. And the data transform for specified
task is implemented in the corresponding repository. For example, the data formatting transform for image
classification task is PackClsInputs and it’s in MMClassification.




Here, taking the classification task as an example, we show a typical data pipeline in the figure below. For
each sample, the basic information stored in the dataset is a dictionary as shown on the far left side of the
figure, after which, every blue block represents a data transform, and in every data transform, we add some new fields (marked in green) or update some existing fields (marked in orange) in the data dictionary.
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Weight initialization

Usually, we’ll customize our module based on nn.Module [https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module], which is implemented by Native PyTorch. Also, torch.nn.init [https://pytorch.org/docs/stable/nn.init.html] could help us initialize the parameters of the model easily. To simplify the process of model construction and initialization, MMEngine designed the BaseModule to help us define and initialize the model from config easily.


Initialize the model from config

The core function of BaseModule is that it could help us to initialize the model from config. Subclasses inherited from BaseModule could define the init_cfg in the __init__ function, and we can choose the method of initialization by configuring init_cfg.

Currently, we support the following initialization methods:



  
    	Initializer
    	Registered name
    	Function


  	ConstantInit
  	Constant
  	Initialize the weight and bias with a constant, commonly used for Convolution



  	XavierInit
  	Xavier
  	Initialize the weight by Xavier initialization, and initialize the bias with a constant



  	NormalInit
  	Normal
  	Initialize the weight by normal distribution, and initialize the bias with a constant



  	TruncNormalInit
  	TruncNormal
  	Initialize the weight by truncated normal distribution, and initialize the bias with a constant, commonly used for Transformer



  	UniformInit
  	Uniform
  	Initialize the weight by uniform distribution, and initialize the bias with a constant, commonly used for convolution



  	KaimingInit
  	Kaiming
  	Initialize the weight by Kaiming initialization, and initialize the bias with a constant. Commonly used for convolution



  	Caffe2XavierInit
  	Caffe2Xavier
  	Xavier initialization in Caffe2, and Kaiming initialization in PyTorh with "fan_in" and "normal" mode. Commonly used for convolution



  	PretrainedInit
  	Pretrained
  	Initialize the model with the pretrained model
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Visualization

Visualization provides an intuitive explanation of the training and testing process of the deep learning model.

MMEngine provides Visualizer to visualize and store the state and intermediate results of the model training and testing process, with the following features:


	It supports basic drawing interface and feature map visualization


	It enables recording training states (such as loss and lr), performance evaluation metrics, and visualization results to a specified or multiple backends, including local device, TensorBoard, and WandB.


	It can be used in any location in the code base.





Basic Drawing APIs

Visualizer provides drawing APIs for common objects such as detection bboxes, points, text, lines, circles, polygons, and binary masks.

These APIs have the following features:


	Can be called multiple times to achieve overlay drawing requirements.


	All support multiple input types such as Tensor, Numpy array, etc.




Typical usages are as follows.


	Draw detection bboxes, masks, text, etc.




import torch
import mmcv
from mmengine.visualization import Visualizer

# https://raw.githubusercontent.com/open-mmlab/mmengine/main/docs/en/_static/image/cat_and_dog.png
image = mmcv.imread('docs/en/_static/image/cat_and_dog.png',
                    channel_order='rgb')
visualizer = Visualizer(image=image)
# single bbox formatted as [xyxy]
visualizer.draw_bboxes(torch.tensor([72, 13, 179, 147]))
# draw multiple bboxes
visualizer.draw_bboxes(torch.tensor([[33, 120, 209, 220], [72, 13, 179, 147]]))
visualizer.show()
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Abstract Data Element

Coming soon. Please refer to chinese documentation [https://mmengine.readthedocs.io/zh_CN/latest/advanced_tutorials/data_element.html].
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Distribution Communication

In distributed training, different processes sometimes need to apply different logics depending on their ranks, local_ranks, etc.
They also need to communicate with each other and do synchronizations on data.
These demands rely on distributed communication.
PyTorch provides a set of basic distributed communication primitives.
Based on these primitives, MMEngine provides some higher level APIs to meet more diverse demands.
Using these APIs provided by MMEngine, modules can:


	ignore the differences between distributed/non-distributed environment


	deliver data in various types apart from Tensor


	ignore the frameworks or backends used for communication




These APIs are roughly categorized into 3 types:


	Initialization: init_dist for setting up distributed environment for the runner


	Query & control: functions including get_world_size for querying world_size, rank and other distributed information


	Collective communication: collective communication functions such as all_reduce




We will detail on these APIs in the following chapters.


Initialization


	init_dist: Launch function of distributed training. Currently it supports 3 launchers including pytorch, slurm and MPI. It also setup the given communication backends, defaults to NCCL.

If you need to change the runtime timeout (default=30 minutes) for distributed operations that take very long, you can specify a different timeout in your env_cfg configuration passing in Runner like this:

env_cfg = dict(
    cudnn_benchmark=True,
    mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
    dist_cfg=dict(backend='nccl', timeout=10800), # Sets the timeout to 3h (10800 seconds)
)
runner = Runner(xxx, env_cfg=env_cfg)











Query and control

The query and control functions are all argument free.
They can be used in both distributed and non-distributed environment.
Their functionalities are listed below:


	get_world_size: Returns the number of processes in current process group. Returns 1 when non-distributed


	get_rank: Returns the global rank of current process in current process group. Returns 0 when non-distributed


	get_backend: Returns the communication backends used by current process group. Returns None when non-distributed


	get_local_rank: Returns the local rank of current process in current process group. Returns 0 when non-distributed


	get_local_size: Returns the number of processes which are both in current process group and on the same machine as the current process. Returns 1 when non-distributed


	get_dist_info: Returns the world_size and rank of the current process group. Returns world_size = 1, rank = 0 when non-distributed


	is_main_process: Returns True if current process is rank 0 in current process group, otherwise False . Always returns True when non-distributed


	master_only: A function decorator. Functions decorated by master_only will only execute on rank 0 process.


	barrier: A synchronization primitive. Every process will hold until all processes in the current process group reach the same barrier location






Collective communication

Collective communication functions are used for data transfer between processes in the same process group.
We provide the following APIs based on PyTorch native functions including all_reduce, all_gather, gather, broadcast.
These APIs are compatible with non-distributed environment and support more data types apart from Tensor.


	all_reduce: AllReduce operation on Tensors in the current process group


	all_gather: AllGather operation on Tensors in the current process group


	gather: Gather Tensors in the current process group to a destinated rank


	broadcast: Broadcast a Tensor to all processes in the current process group


	sync_random_seed: Synchronize random seed between processes in the current process group


	broadcast_object_list: Broadcast a list of Python objects. It requires the object can be serialized by Pickle.


	all_reduce_dict: AllReduce operation on dict. It is based on broadcast and all_reduce.


	all_gather_object: AllGather operations on any Python object than can be serialized by Pickle. It is based on all_gather


	gather_object: Gather Python objects that can be serialized by Pickle


	collect_results: Unified API for collecting a list of data in current process group. It support both CPU and GPU communication
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Logging

Runner will produce a lot of logs during the running process, such as loss, iteration time, learning rate, etc. MMEngine implements a flexible logging system that allows us to choose different types of log statistical methods when configuring the runner. It could help us set/get the recorded log at any location in the code.


Flexible Logging System

Logging system is configured by passing a LogProcessor to the runner. If no log processor is passed, the runner will use the default log processor, which is equivalent to:

log_processor = dict(window_size=10, by_epoch=True, custom_cfg=None, num_digits=4)





The format of the output log is as follows:

import torch
import torch.nn as nn
from torch.utils.data import DataLoader

from mmengine.runner import Runner
from mmengine.model import BaseModel

train_dataset = [(torch.ones(1, 1), torch.ones(1, 1))] * 50
train_dataloader = DataLoader(train_dataset, batch_size=2)


class ToyModel(BaseModel):
    def __init__(self) -> None:
        super().__init__()
        self.linear = nn.Linear(1, 1)

    def forward(self, img, label, mode):
        feat = self.linear(img)
        loss1 = (feat - label).pow(2)
        loss2 = (feat - label).abs()
        return dict(loss1=loss1, loss2=loss2)

runner = Runner(
    model=ToyModel(),
    work_dir='tmp_dir',
    train_dataloader=train_dataloader,
    train_cfg=dict(by_epoch=True, max_epochs=1),
    optim_wrapper=dict(optimizer=dict(type='SGD', lr=0.01))
)
runner.train()





08/21 02:58:41 - mmengine - INFO - Epoch(train) [1][10/25]  lr: 1.0000e-02  eta: 0:00:00  time: 0.0019  data_time: 0.0004  loss1: 0.8381  loss2: 0.9007  loss: 1.7388
08/21 02:58:41 - mmengine - INFO - Epoch(train) [1][20/25]  lr: 1.0000e-02  eta: 0:00:00  time: 0.0029  data_time: 0.0010  loss1: 0.1978  loss2: 0.4312  loss: 0.6290





LogProcessor will output the log in the following format:


	The prefix of the log:


	epoch mode(by_epoch=True): Epoch(train) [{current_epoch}/{current_iteration}]/{dataloader_length}


	iteration mode(by_epoch=False): Iter(train) [{current_iteration}/{max_iteration}])






	Learning rate (lr): The learning rate of the last iteration.


	Time:


	time: The averaged time for inference of the last window_size iterations.


	data_time: The averaged time for loading data of the last window_size iterations.


	eta: The estimated time of arrival to finish the training.






	Loss: The averaged loss output by model of the last window_size iterations.





Note

window_size=10 by default.

The significant digits(num_digits) of the log is 4 by default.

Output the value of all custom logs at the last iteration by default.




Warning

log_processor outputs the epoch based log by default(by_epoch=True). To get an expected log matched with the train_cfg, we should set the same value for by_epoch in train_cfg and log_processor.



Based on the rules above, the code snippet will count the average value of the loss1 and the loss2 every 10 iterations.

If we want to count the global average value of loss1, we can set custom_cfg like this:

runner = Runner(
    model=ToyModel(),
    work_dir='tmp_dir',
    train_dataloader=train_dataloader,
    train_cfg=dict(by_epoch=True, max_epochs=1),
    optim_wrapper=dict(optimizer=dict(type='SGD', lr=0.01)),
    log_processor=dict(
        custom_cfg=[
            dict(data_src='loss1',  # original loss name: loss1
                 method_name='mean',  # statistical method: mean
                 window_size='global')])  # window_size: global
)
runner.train()





08/21 02:58:49 - mmengine - INFO - Epoch(train) [1][10/25]  lr: 1.0000e-02  eta: 0:00:00  time: 0.0026  data_time: 0.0007  loss1: 0.7381  loss2: 0.8446  loss: 1.5827
08/21 02:58:49 - mmengine - INFO - Epoch(train) [1][20/25]  lr: 1.0000e-02  eta: 0:00:00  time: 0.0030  data_time: 0.0012  loss1: 0.4521  loss2: 0.3939  loss: 0.5600





data_src means the original loss name, method_name means the statistic method, window_size means the window size of the statistic method. Since we want to count the global average value of loss1, we set window_size to global.

Currently, MMEngine supports the following statistical methods:




    	statistic method
    	arguments
    	function



    	mean
    	window_size
    	statistic the average log of the last `window_size`



    	min
    	window_size
    	statistic the minimum log of the last `window_size`



    	max
    	window_size
    	statistic the maximum log of the last `window_size`



    	current
    	/
    	statistic the latest





window_size mentioned above could be:


	int number: The window size of the statistic method.


	global: Equivalent to window_size=cur_iteration.


	epoch: Equivalent to window_size=len(dataloader).




If we want to statistic the average value of loss1 of the last 10 iterations, and also want to statistic the global average value of loss1. We need to set log_name additionally:

runner = Runner(
    model=ToyModel(),
    work_dir='tmp_dir',
    train_dataloader=train_dataloader,
    train_cfg=dict(by_epoch=True, max_epochs=1),
    optim_wrapper=dict(optimizer=dict(type='SGD', lr=0.01)),
    log_processor=dict(
        custom_cfg=[
            # log_name means the second name of loss1
            dict(data_src='loss1', log_name='loss1_global', method_name='mean', window_size='global')])
)
runner.train()





08/21 18:39:32 - mmengine - INFO - Epoch(train) [1][10/25]  lr: 1.0000e-02  eta: 0:00:00  time: 0.0016  data_time: 0.0004  loss1: 0.1512  loss2: 0.3751  loss: 0.5264  loss1_global: 0.1512
08/21 18:39:32 - mmengine - INFO - Epoch(train) [1][20/25]  lr: 1.0000e-02  eta: 0:00:00  time: 0.0051  data_time: 0.0036  loss1: 0.0113  loss2: 0.0856  loss: 0.0970  loss1_global: 0.0813





Similarly, we can also statistic the global/local maximum value of loss at the same time.

runner = Runner(
    model=ToyModel(),
    work_dir='tmp_dir',
    train_dataloader=train_dataloader,
    train_cfg=dict(by_epoch=True, max_epochs=1),
    optim_wrapper=dict(optimizer=dict(type='SGD', lr=0.01)),
    log_processor=dict(custom_cfg=[
        # statistic loss1 with the local maximum value
        dict(data_src='loss1',
             log_name='loss1_local_max',
             window_size=10,
             method_name='max'),
        # statistic loss1 with the global maximum value
        dict(
            data_src='loss1',
            log_name='loss1_global_max',
            method_name='max',
            window_size='global')
    ]))
runner.train()





08/21 03:17:26 - mmengine - INFO - Epoch(train) [1][10/25]  lr: 1.0000e-02  eta: 0:00:00  time: 0.0021  data_time: 0.0006  loss1: 1.8495  loss2: 1.3427  loss: 3.1922  loss1_local_max: 2.8872  loss1_global_max: 2.8872
08/21 03:17:26 - mmengine - INFO - Epoch(train) [1][20/25]  lr: 1.0000e-02  eta: 0:00:00  time: 0.0024  data_time: 0.0010  loss1: 0.5464  loss2: 0.7251  loss: 1.2715  loss1_local_max: 2.8872  loss1_global_max: 2.8872





More examples can be found in log_processor.



Customize log

The logging system could not only log the loss, lr, .etc but also collect and output the custom log. For example, if we want to statistic the intermediate loss:

from mmengine.logging import MessageHub


class ToyModel(BaseModel):

    def __init__(self) -> None:
        super().__init__()
        self.linear = nn.Linear(1, 1)

    def forward(self, img, label, mode):
        feat = self.linear(img)
        loss_tmp = (feat - label).abs()
        loss = loss_tmp.pow(2)

        message_hub = MessageHub.get_current_instance()
        # update the intermediate `loss_tmp` in the message hub
        message_hub.update_scalar('train/loss_tmp', loss_tmp.sum())
        return dict(loss=loss)


runner = Runner(
    model=ToyModel(),
    work_dir='tmp_dir',
    train_dataloader=train_dataloader,
    train_cfg=dict(by_epoch=True, max_epochs=1),
    optim_wrapper=dict(optimizer=dict(type='SGD', lr=0.01)),
    log_processor=dict(
        custom_cfg=[
        # statistic the loss_tmp with the averaged value
            dict(
                data_src='loss_tmp',
                window_size=10,
                method_name='mean')
        ]
    )
)
runner.train()





08/21 03:40:31 - mmengine - INFO - Epoch(train) [1][10/25]  lr: 1.0000e-02  eta: 0:00:00  time: 0.0026  data_time: 0.0008  loss_tmp: 0.0097  loss: 0.0000
08/21 03:40:31 - mmengine - INFO - Epoch(train) [1][20/25]  lr: 1.0000e-02  eta: 0:00:00  time: 0.0028  data_time: 0.0013  loss_tmp: 0.0065  loss: 0.0000





The custom log will be recorded by updating the messagehub:


	Calling MessageHub.get_current_instance() to get the message of runner


	Calling MessageHub.update_scalar to update the custom log. The first argument means the log name with the mode prefix(train/val/test). The output log will only retain the log name without the mode prefix.


	Configure statistic method of loss_tmp in log_processor. If it is not configured, only the latest value of loss_tmp will be logged.






Export the debug log

Set log_level=DEBUG for runner, and the debug log will be exported to the work_dir:

runner = Runner(
    model=ToyModel(),
    work_dir='tmp_dir',
    train_dataloader=train_dataloader,
    log_level='DEBUG',
    train_cfg=dict(by_epoch=True, max_epochs=1),
    optim_wrapper=dict(optimizer=dict(type='SGD', lr=0.01)))
runner.train()





08/21 18:16:22 - mmengine - DEBUG - Get class `LocalVisBackend` from "vis_backend" registry in "mmengine"
08/21 18:16:22 - mmengine - DEBUG - An `LocalVisBackend` instance is built from registry, its implementation can be found in mmengine.visualization.vis_backend
08/21 18:16:22 - mmengine - DEBUG - Get class `RuntimeInfoHook` from "hook" registry in "mmengine"
08/21 18:16:22 - mmengine - DEBUG - An `RuntimeInfoHook` instance is built from registry, its implementation can be found in mmengine.hooks.runtime_info_hook
08/21 18:16:22 - mmengine - DEBUG - Get class `IterTimerHook` from "hook" registry in "mmengine"
...





Besides, logs of different ranks will be saved in debug mode if you are training your model with the shared storage. The hierarchy of the log is as follows:

./tmp
├── tmp.log
├── tmp_rank1.log
├── tmp_rank2.log
├── tmp_rank3.log
├── tmp_rank4.log
├── tmp_rank5.log
├── tmp_rank6.log
└── tmp_rank7.log
...
└── tmp_rank63.log





The log of Multiple machine with independent storage:

# device: 0:
work_dir/
└── exp_name_logs
    ├── exp_name.log
    ├── exp_name_rank1.log
    ├── exp_name_rank2.log
    ├── exp_name_rank3.log
    ...
    └── exp_name_rank7.log

# device: 7:
work_dir/
└── exp_name_logs
    ├── exp_name_rank56.log
    ├── exp_name_rank57.log
    ├── exp_name_rank58.log
    ...
    └── exp_name_rank63.log
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File IO

MMEngine implements a unified set of file reading and writing interfaces in fileio module. With the fileio module, we can use the same function to handle different file formats, such as json, yaml and pickle. Other file formats can also be easily extended.

The fileio module also supports reading and writing files from a variety of file storage backends, including disk, Petrel (for internal use), Memcached, LMDB, and HTTP.


Load and dump data

MMEngine provides a universal API for loading and dumping data, currently supported formats are json, yaml, and pickle.


Load from disk or dump to disk

from mmengine import load, dump

# load data from a file
data = load('test.json')
data = load('test.yaml')
data = load('test.pkl')
# load data from a file-like object
with open('test.json', 'r') as f:
    data = load(f, file_format='json')

# dump data to a string
json_str = dump(data, file_format='json')

# dump data to a file with a filename (infer format from file extension)
dump(data, 'out.pkl')

# dump data to a file with a file-like object
with open('test.yaml', 'w') as f:
    data = dump(data, f, file_format='yaml')







Load from other backends or dump to other backends

from mmengine import load, dump

# load data from a file
data = load('s3://bucket-name/test.json')
data = load('s3://bucket-name/test.yaml')
data = load('s3://bucket-name/test.pkl')

# dump data to a file with a filename (infer format from file extension)
dump(data, 's3://bucket-name/out.pkl')





It is also very convenient to extend the API to support more file formats. All you need to do is to write a file handler inherited from BaseFileHandler and register it with one or several file formats.

from mmengine import register_handler, BaseFileHandler

# To register multiple file formats, a list can be used as the argument.
# @register_handler(['txt', 'log'])
@register_handler('txt')
class TxtHandler1(BaseFileHandler):

    def load_from_fileobj(self, file):
        return file.read()

    def dump_to_fileobj(self, obj, file):
        file.write(str(obj))

    def dump_to_str(self, obj, **kwargs):
        return str(obj)





Here is an example of PickleHandler:

from mmengine import BaseFileHandler
import pickle

class PickleHandler(BaseFileHandler):

    def load_from_fileobj(self, file, **kwargs):
        return pickle.load(file, **kwargs)

    def load_from_path(self, filepath, **kwargs):
        return super(PickleHandler, self).load_from_path(
            filepath, mode='rb', **kwargs)

    def dump_to_str(self, obj, **kwargs):
        kwargs.setdefault('protocol', 2)
        return pickle.dumps(obj, **kwargs)

    def dump_to_fileobj(self, obj, file, **kwargs):
        kwargs.setdefault('protocol', 2)
        pickle.dump(obj, file, **kwargs)

    def dump_to_path(self, obj, filepath, **kwargs):
        super(PickleHandler, self).dump_to_path(
            obj, filepath, mode='wb', **kwargs)








Load a text file as a list or dict

For example a.txt is a text file with 5 lines.

a
b
c
d
e






Load from disk

Use list_from_file to load the list from a.txt:

from mmengine import list_from_file

print(list_from_file('a.txt'))
# ['a', 'b', 'c', 'd', 'e']
print(list_from_file('a.txt', offset=2))
# ['c', 'd', 'e']
print(list_from_file('a.txt', max_num=2))
# ['a', 'b']
print(list_from_file('a.txt', prefix='/mnt/'))
# ['/mnt/a', '/mnt/b', '/mnt/c', '/mnt/d', '/mnt/e']





For example b.txt is a text file with 3 lines.

1 cat
2 dog cow
3 panda





Then use dict_from_file to load the dict from b.txt:

from mmengine import dict_from_file

print(dict_from_file('b.txt'))
# {'1': 'cat', '2': ['dog', 'cow'], '3': 'panda'}
print(dict_from_file('b.txt', key_type=int))
# {1: 'cat', 2: ['dog', 'cow'], 3: 'panda'}







Load from other backends

Use list_from_file to load the list from s3://bucket-name/a.txt:

from mmengine import list_from_file

print(list_from_file('s3://bucket-name/a.txt'))
# ['a', 'b', 'c', 'd', 'e']
print(list_from_file('s3://bucket-name/a.txt', offset=2))
# ['c', 'd', 'e']
print(list_from_file('s3://bucket-name/a.txt', max_num=2))
# ['a', 'b']
print(list_from_file('s3://bucket-name/a.txt', prefix='/mnt/'))
# ['/mnt/a', '/mnt/b', '/mnt/c', '/mnt/d', '/mnt/e']





Use dict_from_file to load the dict from s3://bucket-name/b.txt.

from mmengine import dict_from_file

print(dict_from_file('s3://bucket-name/b.txt'))
# {'1': 'cat', '2': ['dog', 'cow'], '3': 'panda'}
print(dict_from_file('s3://bucket-name/b.txt', key_type=int))
# {1: 'cat', 2: ['dog', 'cow'], 3: 'panda'}








Load and dump checkpoints

We can read the checkpoints from disk or internet in the following way:

import torch

filepath1 = '/path/of/your/checkpoint1.pth'
filepath2 = 'http://path/of/your/checkpoint3.pth'

# read checkpoints from disk
checkpoint = torch.load(filepath1)
# save checkpoints to disk
torch.save(checkpoint, filepath1)

# read checkpoints from internet
checkpoint = torch.utils.model_zoo.load_url(filepath2)





In MMEngine, reading and writing checkpoints in different storage forms can be uniformly implemented with load_checkpoint and save_checkpoint:

from mmengine import load_checkpoint, save_checkpoint

filepath1 = '/path/of/your/checkpoint1.pth'
filepath2 = 's3://bucket-name/path/of/your/checkpoint1.pth'
filepath3 = 'http://path/of/your/checkpoint3.pth'

# read checkpoints from disk
checkpoint = load_checkpoint(filepath1)
# save checkpoints to disk
save_checkpoint(checkpoint, filepath1)

# read checkpoints from s3
checkpoint = load_checkpoint(filepath2)
# save checkpoints to s3
save_checkpoint(checkpoint, filepath2)

# read checkpoints from internet
checkpoint = load_checkpoint(filepath3)
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Global manager (ManagerMixin)

During the training process, it is inevitable that we need to access some variables globally. Here are some examples:


	Accessing the logger in model to print some initialization information


	Accessing the Visualizer anywhere to visualize the predictions and feature maps.


	Accessing the scope in Registry to get the current scope.




In order to unify the mechanism to get the global variable built from different classes, MMEngine designs the ManagerMixin.


Interface introduction


	get_instance(name=’’, **kwargs): Create or get the instance by name.


	get_current_instance(): Get the currently built instance.


	instance_name: Get the name of the instance.






How to use


	Define a class inherited from ManagerMixin




from mmengine.utils import ManagerMixin


class GlobalClass(ManagerMixin):
    def __init__(self, name, value):
        super().__init__(name)
        self.value = value






Note

Subclasses of ManagerMixin must accept name argument in __init__. The name argument is used to identify the instance, and you can get the instance by get_instance(name).




	Instantiate the instance anywhere. let’s take the hook as an example:




from mmengine import Hook

class CustomHook(Hook):
    def before_run(self, runner):
        GlobalClass.get_instance('mmengine', value=50)
        GlobalClass.get_instance(runner.experiment_name, value=100)





GlobalClass.get_instance({name}) will first check whether the instance with the name {name} has been built. If not, it will build a new instance with the name {name}, otherwise it will return the existing instance. As the above example shows, when we call GlobalClass.get_instance('mmengine') at the first time, it will build a new instance with the name mmengine. Then we call GlobalClass.get_instance(runner.experiment_name), it will also build a new instance with a different name.

Here we build two instances for the convenience of the subsequent introduction of get_current_instance.


	Accessing the instance anywhere




import torch.nn as nn


class CustomModule(nn.Module):
    def forward(self, x):
        value = GlobalClass.get_current_instance().value
        # Since the name of the latest built instance is
        # `runner.experiment_name`, value will be 100.

        value = GlobalClass.get_instance('mmengine').value
        # The value of instance with the name mmengine is 50.

        value = GlobalClass.get_instance('mmengine', 1000).value
        # `mmengine` instance has been built, an error will be raised
        # if `get_instance` accepts other parameters.





We can get the instance with the specified name by get_instance(name), or get the currently built instance by get_current_instance anywhere.


Warning

If the instance with the specified name has already been built, get_instance will raise an error if it accepts its construct parameters.
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Use modules from other libraries

Based on MMEngine’s Registry and Config, users can build modules across libraries.
For example, use MMClassification [https://github.com/open-mmlab/mmclassification]’s backbones in MMDetection [https://github.com/open-mmlab/mmdetection], or MMDetection [https://github.com/open-mmlab/mmdetection]’s data transforms in MMRotate [https://github.com/open-mmlab/mmrotate], or using MMDetection [https://github.com/open-mmlab/mmdetection]’s detectors in MMTracking [https://github.com/open-mmlab/mmtracking].

Modules registered in the same registry tree can be called across libraries by adding the package name prefix before the module’s type in the config. Here are some common examples:


Use backbone across libraries

Taking the example of using MMClassification’s ConvNeXt in MMDetection:

Firstly, adding the custom_imports field to the config to register the backbones of MMClassification to the registry.

Secondly, adding the package name of MMClassification mmcls to the type of the backbone as a prefix: mmcls.ConvNeXt

# Use custom_imports to register mmcls models to the registry
custom_imports = dict(imports=['mmcls.models'], allow_failed_imports=False)

model = dict(
  type='MaskRCNN',
  data_preprocessor=dict(...),
  backbone=dict(
      type='mmcls.ConvNeXt', # Add mmcls prefix to enable cross-library mechanism
      arch='tiny',
      out_indices=[0, 1, 2, 3],
      drop_path_rate=0.4,
      layer_scale_init_value=1.0,
      gap_before_final_norm=False,
      init_cfg=dict(
          type='Pretrained',
          checkpoint=
          'https://download.openmmlab.com/mmclassification/v0/convnext/downstream/convnext-tiny_3rdparty_32xb128-noema_in1k_20220301-795e9634.pth',
          prefix='backbone.')),
  neck=dict(...),
  rpn_head=dict(...))







Use data transform across libraries

As with the example of backbone above, cross-library calls can be simply achieved by adding custom_imports and prefix in the config:

# Use custom_imports to register mmdet transforms to the registry
custom_imports = dict(imports=['mmdet.datasets.transforms'], allow_failed_imports=False)

# Add mmdet prefix to enable cross-library mechanism
train_pipeline=[
    dict(type='mmdet.LoadImageFromFile'),
    dict(type='mmdet.LoadAnnotations', with_bbox=True, box_type='qbox'),
    dict(type='ConvertBoxType', box_type_mapping=dict(gt_bboxes='rbox')),
    dict(type='mmdet.Resize', scale=(1024, 2014), keep_ratio=True),
    dict(type='mmdet.RandomFlip', prob=0.5),
    dict(type='mmdet.PackDetInputs')
]







Use detector across libraries

Using an algorithm from another library is a little bit complex.

An algorithm contains multiple submodules. Each submodule needs to add a prefix to its type. Take  using MMDetection’s YOLOX in MMTracking as an example:

# Use custom_imports to register mmdet models to the registry
custom_imports = dict(imports=['mmdet.models'], allow_failed_imports=False)

model = dict(
    type='mmdet.YOLOX',
    backbone=dict(type='mmdet.CSPDarknet', deepen_factor=1.33, widen_factor=1.25),
    neck=dict(
        type='mmdet.YOLOXPAFPN',
        in_channels=[320, 640, 1280],
        out_channels=320,
        num_csp_blocks=4),
    bbox_head=dict(
        type='mmdet.YOLOXHead', num_classes=1, in_channels=320, feat_channels=320),
    train_cfg=dict(assigner=dict(type='mmdet.SimOTAAssigner', center_radius=2.5)))





To prevent adding prefix to all of the submodules manually, the _scope_ keyword is introduced. When the _scope_ keyword is added to the config of a module, all submodules’ scope will be changed by the _scope_ keyword. Here is an example config:

# Use custom_imports to register mmdet models to the registry
custom_imports = dict(imports=['mmdet.models'], allow_failed_imports=False)

model = dict(
    _scope_='mmdet', # use the _scope_ keyword to avoid adding prefix to all submodules
    type='YOLOX',
    backbone=dict(type='CSPDarknet', deepen_factor=1.33, widen_factor=1.25),
    neck=dict(
        type='YOLOXPAFPN',
        in_channels=[320, 640, 1280],
        out_channels=320,
        num_csp_blocks=4),
    bbox_head=dict(
        type='YOLOXHead', num_classes=1, in_channels=320, feat_channels=320),
    train_cfg=dict(assigner=dict(type='SimOTAAssigner', center_radius=2.5)))





These two examples are equivalent to each other.

If you want to know more about the registry and config, please refer to Config Tutorial and Registry Tutorial
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Test time augmentation

Test time augmentation (TTA) is a data augmentation strategy used during the testing phase. It involves applying various augmentations, such as flipping and scaling, to the same image and then merging the predictions of each augmented image to produce a more accurate prediction. To make it easier for users to use TTA, MMEngine provides BaseTTAModel class, which allows users to implement different TTA strategies by simply extending the BaseTTAModel class according to their needs.

The core implementation of TTA is usually divided into two parts:


	Data augmentation: This part is implemented in MMCV, see the api docs TestTimeAug [https://mmcv.readthedocs.io/en/2.x/api/generated/mmcv.transforms.TestTimeAug.html#mmcv.transforms.TestTimeAug] for more information.


	Merge the predictions: The subclasses of BaseTTAModel will merge the predictions of enhanced data in the test_step method to improve the accuracy of predictions.





Get started

A simple example of TTA is given in examples/test_time_augmentation.py [https://github.com/open-mmlab/mmengine/blob/main/examples/test_time_augmentation.py]


Prepare test time augmentation pipeline

BaseTTAModel needs to be used with TestTimeAug implemented in MMCV:

tta_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(
        type='TestTimeAug',
        transforms=[
            [dict(type='Resize', img_scale=(1333, 800), keep_ratio=True)],
            [dict(type='RandomFlip', flip_ratio=0.),
             dict(type='RandomFlip', flip_ratio=1.)],
            [dict(type='PackXXXInputs', keys=['img'])],
        ])
]





The above data augmentation pipeline will first perform a scaling enhancement on the image, followed by 2 flipping enhancements (flipping and not flipping). Finally, the image is packaged into the final result using PackXXXInputs.



Define the merge strategy

Commonly, users only need to inherit BaseTTAModel and override the BaseTTAModel.merge_preds to merge the predictions of enhanced data. merge_preds accepts a list of enhanced batch data, and each element of the list means the enhanced single data of the batch.

The BaseTTAModel class requires inferencing on both flipped and unflipped images and then merges the results. The merge_preds method accepts a list where each element represents the results of applying data augmentation to a single element of the batch. For example, if batch_size is 3, and we flip each image in the batch as an augmentation, merge_preds would accept a parameter like the following:

# `data_{i}_{j}` represents the result of applying the jth data augmentation to
#  the ith image in the batch. So, if batch_size is 3, i can take on values of
# 0, 1, and 2. If there are 2 augmentation methods
# (such as flipping the image), then j can take on values of 0 and 1.
# For example, data_2_1 would represent the result of applying the second
# augmentation method (flipping) to the third image in the batch.

demo_results = [
    [data_0_0, data_0_1],
    [data_1_0, data_1_1],
    [data_2_0, data_2_1],
]





The merge_preds method will merge the predictions demo_results into single batch results. For example, if we want to merge multiple classification results:

class AverageClsScoreTTA(BaseTTAModel):
    def merge_preds(
        self,
        data_samples_list: List[List[ClsDataSample]],
    ) -> List[ClsDataSample]:

        merged_data_samples = []
        for data_samples in data_samples_list:
            merged_data_sample: ClsDataSample = data_samples[0].new()
            merged_score = sum(data_sample.pred_label.score
                               for data_sample in data_samples) / len(data_samples)
            merged_data_sample.set_pred_score(merged_score)
            merged_data_samples.append(merged_data_sample)
        return merged_data_samples





The configuration file for the above example is as follows:

tta_model = dict(type='AverageClsScoreTTA')







Changes to test script

cfg.model = ConfigDict(**cfg.tta_model, module=cfg.model)
cfg.test_dataloader.dataset.pipeline = cfg.tta_pipeline








Advanced usage

In general, users who inherit the BaseTTAModel class only need to implement the merge_preds method to perform result fusion. However, for more complex cases, such as fusing the results of a multi-stage detector, it may be necessary to override the test_step method. This requires an understanding of the data flow in the BaseTTAModel class and its relationship with other components.


The relationship between BaseTTAModel and other components

The BaseTTAModel class acts as an intermediary between the DDPWrapper and Model classes. When the Runner.test() method is executed, it will first call DDPWrapper.test_step(), followed by TTAModel.test_step(), and finally model.test_step().
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Model Complexity Analysis

We provide a tool to help with the complexity analysis for the network. We borrow the idea from the implementation of fvcore [https://github.com/facebookresearch/fvcore] to build this tool, and plan to support more custom operators in the future. Currently, it provides the interfaces to compute “FLOPs”, “Activations” and “Parameters”,  of the given model, and supports printing the related information layer-by-layer in terms of network structure or table. The analysis tool provides both operator-level and module-level flop counts simultaneously. Please refer to Flop Count [https://github.com/facebookresearch/fvcore/blob/main/docs/flop_count.md] for implementation details of how to accurately measure the flops of one operator if interested.


Definition

The model complexity has three indicators, namely floating-point operations (FLOPs), activations, and parameters. Their definitions are as follows:


	FLOPs

Floating-point operations (FLOPs) is not a clearly defined indicator. Here, we refer to the description in  detectron2 [https://detectron2.readthedocs.io/en/latest/modules/fvcore.html#fvcore.nn.FlopCountAnalysis], which defines a set of multiply-accumulate operations as 1 FLOP.



	Activations

Activation is used to measure the feature quantity produced from one layer.



	Parameters

The parameter count of a model.





For example, given an input size of inputs = torch.randn((1, 3, 10, 10)) and a convolutional layer conv = nn.Conv2d(in_channels=3, out_channels=10, kernel_size=3), if the output feature map size is (1, 10, 8, 8), then its FLOPs are 17280 = 10*8*8*3*3*3 (where 10*8*8 represents the output feature map size, and 3*3*3 represents the computation for each output), activations are 640 = 10*8*8, and the parameter count is 280 = 3*10*3*3 + 10 (where 3*10*3*3 represents the size of weights, and 10 represents the size of bias).



Usage


Model built with native nn.Module

Build a model

from torch import nn
from mmengine.analysis import get_model_complexity_info


# return a dict of analysis results, including:
# ['flops', 'flops_str', 'activations', 'activations_str', 'params', 'params_str', 'out_table', 'out_arch']

class InnerNet(nn.Module):
    def __init__(self):
        super().__init__()
        self.fc1 = nn.Linear(10,10)
        self.fc2 = nn.Linear(10,10)
    def forward(self, x):
        return self.fc1(self.fc2(x))


class TestNet(nn.Module):
    def __init__(self):
        super().__init__()
        self.fc1 = nn.Linear(10,10)
        self.fc2 = nn.Linear(10,10)
        self.inner = InnerNet()
    def forward(self, x):
        return self.fc1(self.fc2(self.inner(x)))

input_shape = (1, 10)
model = TestNet()

analysis_results = get_model_complexity_info(model, input_shape)





The analysis_results returned by get_model_complexity_info is a dict, which contains the following keys:


	flops: number of total flops, e.g., 10000, 10000


	flops_str: with formatted string, e.g., 1.0G, 100M


	params: number of total parameters, e.g., 10000, 10000


	params_str: with formatted string, e.g., 1.0G, 100M


	activations: number of total activations, e.g., 10000, 10000


	activations_str: with formatted string, e.g., 1.0G, 100M


	out_table: print related information by table




Print the results


	print related information by table

print(analysis_results['out_table'])





+---------------------+----------------------+--------+--------------+
| module              | #parameters or shape | #flops | #activations |
+---------------------+----------------------+--------+--------------+
| model               | 0.44K                | 0.4K   | 40           |
|  fc1                |  0.11K               |  100   |  10          |
|   fc1.weight        |   (10, 10)           |        |              |
|   fc1.bias          |   (10,)              |        |              |
|  fc2                |  0.11K               |  100   |  10          |
|   fc2.weight        |   (10, 10)           |        |              |
|   fc2.bias          |   (10,)              |        |              |
|  inner              |  0.22K               |  0.2K  |  20          |
|   inner.fc1         |   0.11K              |   100  |   10         |
|    inner.fc1.weight |    (10, 10)          |        |              |
|    inner.fc1.bias   |    (10,)             |        |              |
|   inner.fc2         |   0.11K              |   100  |   10         |
|    inner.fc2.weight |    (10, 10)          |        |              |
|    inner.fc2.bias   |    (10,)             |        |              |
+---------------------+----------------------+--------+--------------+







	print related information by network layers

print(analysis_results['out_arch'])





TestNet(
  #params: 0.44K, #flops: 0.4K, #acts: 40
  (fc1): Linear(
    in_features=10, out_features=10, bias=True
    #params: 0.11K, #flops: 100, #acts: 10
  )
  (fc2): Linear(
    in_features=10, out_features=10, bias=True
    #params: 0.11K, #flops: 100, #acts: 10
  )
  (inner): InnerNet(
    #params: 0.22K, #flops: 0.2K, #acts: 20
    (fc1): Linear(
      in_features=10, out_features=10, bias=True
      #params: 0.11K, #flops: 100, #acts: 10
    )
    (fc2): Linear(
      in_features=10, out_features=10, bias=True
      #params: 0.11K, #flops: 100, #acts: 10
    )
  )
)







	print results with formatted string

print("Model Flops:{}".format(analysis_results['flops_str']))
# Model Flops:0.4K
print("Model Parameters:{}".format(analysis_results['params_str']))
# Model Parameters:0.44K











Model built with mmengine

import torch.nn.functional as F
import torchvision
from mmengine.model import BaseModel
from mmengine.analysis import get_model_complexity_info


class MMResNet50(BaseModel):
    def __init__(self):
        super().__init__()
        self.resnet = torchvision.models.resnet50()

    def forward(self, imgs, labels=None, mode='tensor'):
        x = self.resnet(imgs)
        if mode == 'loss':
            return {'loss': F.cross_entropy(x, labels)}
        elif mode == 'predict':
            return x, labels
        elif mode == 'tensor':
            return x


input_shape = (3, 224, 224)
model = MMResNet50()

analysis_results = get_model_complexity_info(model, input_shape)

print("Model Flops:{}".format(analysis_results['flops_str']))
# Model Flops:4.145G
print("Model Parameters:{}".format(analysis_results['params_str']))
# Model Parameters:25.557M








Interface

We provide more options to support custom output


	model: (nn.Module) the model to be analyzed


	input_shape: (tuple) the shape of the input, e.g., (3, 224, 224)


	inputs: (optional: torch.Tensor), if given, input_shape will be ignored


	show_table: (bool) whether return the statistics in the form of table, default: True


	show_arch: (bool) whether return the statistics by network layers,  default: True
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Hook

Hook programming is a programming pattern in which a mount point is set in one or more locations of a program. When the program runs to a mount point, all methods registered to it at runtime are automatically called. Hook programming can increase the flexibility and extensibility of the program since users can register custom methods to the mount point to be called without modifying the code in the program.


Examples

Here is an example of how it works.

pre_hooks = [(print, 'hello')]
post_hooks = [(print, 'goodbye')]

def main():
    for func, arg in pre_hooks:
        func(arg)
    print('do something here')
    for func, arg in post_hooks:
        func(arg)

main()





Output of the above example.

hello
do something here
goodbye





As we can see, the main function calls print defined in hooks in two locations without making any changes.

Hook is also used everywhere in PyTorch, for example in the neural network module (nn.Module) to get the forward input and output of the module as well as the reverse input and output. For example, the register_forward_hook [https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module.register_forward_hook] method registers a forward hook with the module, and the hook can get the forward input and output of the module.

The following is an example of the register_forward_hook usage.

import torch
import torch.nn as nn

def forward_hook_fn(
    module,  # object to be registered hooks
    input,   # forward input of module
    output,  # forward output of module
):
    print(f'"forward_hook_fn" is invoked by {module.name}')
    print('weight:', module.weight.data)
    print('bias:', module.bias.data)
    print('input:', input)
    print('output:', output)

class Model(nn.Module):
    def __init__(self):
        super().__init__()
        self.fc = nn.Linear(3, 1)

    def forward(self, x):
        y = self.fc(x)
        return y

model = Model()
# Register forward_hook_fn to each submodule of model
for module in model.children():
    module.register_forward_hook(forward_hook_fn)

x = torch.Tensor([[0.0, 1.0, 2.0]])
y = model(x)





Output of the above example.

"forward_hook_fn" is invoked by Linear(in_features=3, out_features=1, bias=True)
weight: tensor([[-0.4077,  0.0119, -0.3606]])
bias: tensor([-0.2943])
input: (tensor([[0., 1., 2.]]),)
output: tensor([[-1.0036]], grad_fn=<AddmmBackward>)





We can see that the forward_hook_fn hook registered to the nn.Linear module is called, and in that hook the weights, biases, module inputs, and outputs of the Linear module are printed. For more information on the use of PyTorch hooks you can read nn.Module [https://pytorch.org/docs/stable/generated/torch.nn.Module.html].



Design on MMEngine

Before introducing the design of the Hook in MMEngine, let’s briefly introduce the basic steps of model training using PyTorch (copied from PyTorch Tutorials [https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html#sphx-glr-beginner-blitz-cifar10-tutorial-py]).

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision.transforms as transforms
from torch.utils.data import Dataset, DataLoader

class CustomDataset(Dataset):
    pass

class Net(nn.Module):
    pass

def main():
    transform = transforms.ToTensor()
    train_dataset = CustomDataset(transform=transform, ...)
    val_dataset = CustomDataset(transform=transform, ...)
    test_dataset = CustomDataset(transform=transform, ...)
    train_dataloader = DataLoader(train_dataset, ...)
    val_dataloader = DataLoader(val_dataset, ...)
    test_dataloader = DataLoader(test_dataset, ...)

    net = Net()
    criterion = nn.CrossEntropyLoss()
    optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

    for i in range(max_epochs):
        for inputs, labels in train_dataloader:
            optimizer.zero_grad()
            outputs = net(inputs)
            loss = criterion(outputs, labels)
            loss.backward()
            optimizer.step()

        with torch.no_grad():
            for inputs, labels in val_dataloader:
                outputs = net(inputs)
                loss = criterion(outputs, labels)

    with torch.no_grad():
        for inputs, labels in test_dataloader:
            outputs = net(inputs)
            accuracy = ...





The above pseudo-code is the basic step to train a model. If we want to add custom operations to the above code, we need to modify and extend the main function continuously. To increase the flexibility and extensibility of the main function, we can insert mount points into the main function and implement the logic of calling hooks at the corresponding mount points. In this case, we only need to insert hooks into these locations to implement custom logic, such as loading model weights, updating model parameters, etc.

def main():
    ...
    call_hooks('before_run', hooks)
    call_hooks('after_load_checkpoint', hooks)
    call_hooks('before_train', hooks)
    for i in range(max_epochs):
        call_hooks('before_train_epoch', hooks)
        for inputs, labels in train_dataloader:
            call_hooks('before_train_iter', hooks)
            outputs = net(inputs)
            loss = criterion(outputs, labels)
            call_hooks('after_train_iter', hooks)
            loss.backward()
            optimizer.step()
        call_hooks('after_train_epoch', hooks)

        call_hooks('before_val_epoch', hooks)
        with torch.no_grad():
            for inputs, labels in val_dataloader:
                call_hooks('before_val_iter', hooks)
                outputs = net(inputs)
                loss = criterion(outputs, labels)
                call_hooks('after_val_iter', hooks)
        call_hooks('after_val_epoch', hooks)

        call_hooks('before_save_checkpoint', hooks)
    call_hooks('after_train', hooks)

    call_hooks('before_test_epoch', hooks)
    with torch.no_grad():
        for inputs, labels in test_dataloader:
            call_hooks('before_test_iter', hooks)
            outputs = net(inputs)
            accuracy = ...
            call_hooks('after_test_iter', hooks)
    call_hooks('after_test_epoch', hooks)

    call_hooks('after_run', hooks)





In MMEngine, we encapsulates the training process into an executor (Runner). The Runner calls hooks at specific mount points to complete the customization logic. For more information about Runner, please read the Runner documentation.

To facilitate management, MMEngine defines mount points as methods and integrates them into Base Hook. We just need to inherit the base hook and implement custom logic at specific location according to our needs, then register the hooks to the Runner. Those hooks will be called automatically.

There are 22 mount points in the Base Hook.


	before_run


	after_run


	before_train


	after_train


	before_train_epoch


	after_train_epoch


	before_train_iter


	after_train_iter


	before_val


	after_val


	before_test_epoch


	after_test_epoch


	before_val_iter


	after_val_iter


	before_test


	after_test


	before_test_epoch


	after_test_epoch


	before_test_iter


	after_test_iter


	before_save_checkpoint


	after_load_checkpoint




Further readings: Hook tutorial and Hook API documentations
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Runner

Deep learning algorithms usually share similar pipelines for training, validation and testing.
Therefore, MMengine designed Runner to simplify the construction of these pipelines.
In most cases, users can use our default Runner directly.
If you find it not feasible to implement your ideas, you can also modify it or customize your own runner.

Before introducing the design of Runner, let’s walk through some examples to better understand why we should use runner.
Below is a few lines of pseudo codes for training models in PyTorch:

model = ResNet()
optimizer = SGD(model.parameters(), lr=0.01, momentum=0.9)
train_dataset = ImageNetDataset(...)
train_dataloader = DataLoader(train_dataset, ...)

for i in range(max_epochs):
    for data_batch in train_dataloader:
        optimizer.zero_grad()
        outputs = model(data_batch)
        loss = loss_func(outputs, data_batch)
        loss.backward()
        optimizer.step()





Pseudo codes for model validation in PyTorch:

model = ResNet()
model.load_state_dict(torch.load(CKPT_PATH))
model.eval()

test_dataset = ImageNetDataset(...)
test_dataloader = DataLoader(test_dataset, ...)

for data_batch in test_dataloader:
    outputs = model(data_batch)
    acc = calculate_acc(outputs, data_batch)





Pseudo codes for model inference in PyTorch:

model = ResNet()
model.load_state_dict(torch.load(CKPT_PATH))
model.eval()

for img in imgs:
    prediction = model(img)





The observation from the above 3 pieces of codes is that they are similar.
They can all be divided into some distinct steps, such as model construction, data loading and loop iterations.
Although the above examples are based on image classification tasks, the same holds for many other tasks as well, including object detection, image segmentation, etc.
Based on the observation above, we propose runner, which structures the training, validation and testing pipeline.
With runner, the only thing you need to do is to prepare necessary components (models, data, etc.) of your pipeline, and leave the schedule and execution to Runner.
You are free of constructing similar pipelines one and another time.
You are free of annoying details like the differences between distributed and non-distributed training.
You can focus on your own awesome ideas.
These are all achieved by runner and various practical modules in MMEngine.

[image: Runner]

The Runner in MMEngine contains various modules required for training, testing and validation, as well as loop controllers(Loop) and Hook, as shown in the figure above.
It provides 3 APIs for users: train, val and test, each correspond to a specific Loop.
You can use Runner either by providing a config file, or by providing manually constructed modules.
Once activated, the Runner will automatically setup the runtime environment, build/compose your modules, execute the loop iterations in Loop and call registered hooks during iterations.

The execution order of Runner is as follows:

[image: runner_flow]

A feature of Runner is that it will always lazily initialize modules managed by itself.
To be specific, Runner won’t build every module on initialization, and it won’t build a module until it is needed in current Loop.
Therefore, if you are running only one of the train, val, or test pipelines, you only need to provide the relevant configs/modules.


Loop

In MMEngine, we abstract the execution process of the task into Loop, based on the observation that most deep learning tasks can be summarized as a model iterating over datasets.
We provide 4 built-in loops in MMEngine:


	EpochBasedTrainLoop


	IterBasedTrainLoop


	ValLoop


	TestLoop




[image: Loop]

The built-in runner and loops are capable of most deep learning tasks, but surely not all.
Some tasks need extra modifications and refactorizations.
Therefore, we make it possible for users to customize their own pipelines for model training, validation and testing.

You can write your own pipeline by subclassing BaseLoop, which needs 2 arguments for initialization: 1) runner the Runner instance, and 2) dataloader the dataloader used in this loop.
You are free to add more arguments to your own loop subclass.
After defining your own loop subclass, you should register it to LOOPS(mmengine.registry.LOOPS), and specify it in config files by type field in train_cfg, val_cfg and test_cfg.
In fact, you can write any execution order, any hook position in your own loop.
However, built-in hooks may not work if you change hook positions, which may lead to inconsistent behavior during training.
Therefore, we strongly recommend you to implement you subclass with similar execution order illustrated in the figure above, and with the same hook positions defined in hook documentation.

from mmengine.registry import LOOPS, HOOKS
from mmengine.runner import BaseLoop
from mmengine.hooks import Hook


# Customized validation loop
@LOOPS.register_module()
class CustomValLoop(BaseLoop):
    def __init__(self, runner, dataloader, evaluator, dataloader2):
        super().__init__(runner, dataloader, evaluator)
        self.dataloader2 = runner.build_dataloader(dataloader2)

    def run(self):
        self.runner.call_hooks('before_val_epoch')
        for idx, data_batch in enumerate(self.dataloader):
            self.runner.call_hooks(
                'before_val_iter', batch_idx=idx, data_batch=data_batch)
            outputs = self.run_iter(idx, data_batch)
            self.runner.call_hooks(
                'after_val_iter', batch_idx=idx, data_batch=data_batch, outputs=outputs)
        metric = self.evaluator.evaluate()

        # add extra loop for validation purpose
        for idx, data_batch in enumerate(self.dataloader2):
            # add new hooks
            self.runner.call_hooks(
                'before_valloader2_iter', batch_idx=idx, data_batch=data_batch)
            self.run_iter(idx, data_batch)
            # add new hooks
            self.runner.call_hooks(
                'after_valloader2_iter', batch_idx=idx, data_batch=data_batch, outputs=outputs)
        metric2 = self.evaluator.evaluate()

        ...

        self.runner.call_hooks('after_val_epoch')


# Define a hook with extra hook positions
@HOOKS.register_module()
class CustomValHook(Hook):
    def before_valloader2_iter(self, batch_idx, data_batch):
        ...

    def after_valloader2_iter(self, batch_idx, data_batch, outputs):
        ...






The example above shows how to implement a different validation loop.
The new loop validates on two different validation datasets.
It also defines a new hook position in the second validation.
You can easily use it by setting type='CustomValLoop' in val_cfg in your config file.

# Customized validation loop
val_cfg = dict(type='CustomValLoop', dataloader2=dict(dataset=dict(type='ValDataset2'), ...))
# Customized hook with extra hook position
custom_hooks = [dict(type='CustomValHook')]







Customize Runner

Moreover, you can write your own runner by subclassing Runner if the built-in Runner is not feasible.
The method is similar to writing other modules: write your subclass inherited from Runner, overrides some functions, register it to mmengine.registry.RUNNERS and access it by assigning runner_type in your config file.

from mmengine.registry import RUNNERS
from mmengine.runner import Runner

@RUNNERS.register_module()
class CustomRunner(Runner):

    def setup_env(self):
        ...





The example above shows how to implement a customized runner which overrides the setup_env function and is registered to RUNNERS.
Now CustomRunner is prepared to be used by setting runner_type='CustomRunner' in your config file.

Further readings: Runner tutorial and Runner API documentations
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Evaluation

Coming soon. Please refer to chinese documentation [https://mmengine.readthedocs.io/zh_CN/latest/design/evaluation.html].
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Visualization


1 Overall Design

Visualization provides an intuitive explanation of the training and testing process of the deep learning model. In OpenMMLab, we expect the visualization module to meet the following requirements:


	Provides rich out-of-the-box features that can meet most computer vision visualization tasks.


	Versatile, expandable, and can be customized easily


	Able to visualize at anywhere in the training and testing process.


	Unified APIs for all OpenMMLab libraries, which is convenient for users to understand and use.




Based on the above requirements, we proposed the Visualizer and various VisBackend such as LocalVisBackend, WandbVisBackend, and TensorboardVisBackend in OpenMMLab 2.0. The visualizer could not only visualize the image data, but also things like configurations, scalars, and model structure.


	For convenience, the APIs provided by the Visualizer implement the drawing and storage functions.  As an internal property of Visualizer, VisBackend will be called by Visualizer to write data to different backends.


	Considering that you may want to write data to multiple backends after drawing, Visualizer can be configured with multiple backends. When the user calls the storage API of the Visualizer, it will traverse and call all the specified APIs of VisBackend internally.




The UML diagram of the two is as follows.
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Logging


Overview

Runner produces amounts of logs during execution. These logs include dataset information, model initialization, learning rates, losses, etc. In order to make these logs easily accessed by users, MMEngine designs MessageHub, HistoryBuffer, LogProcessor and MMLogger, which enable:


	Configure statistical methods in config files. For example, losses can be globally averaged or smoothed by a sliding window.


	Query training states (iterations, epochs, etc.) in any module


	Configure whether save the multi-process log or not during distributed training.




[image: image]

Each scalar (losses, learning rates, etc.) during training is encapsulated by HistoryBuffer, managed by MessageHub in key-value pairs, formatted by LogProcessor and then exported to various visualization backends by LoggerHook. In most cases, statistical methods of these scalars can be configured through the LogProcessor without understanding the data flow.  Before diving into the design of the logging system, please read through logging tutorial first for familiarizing basic use cases.



HistoryBuffer

HistoryBuffer records the history of the corresponding scalar such as losses, learning rates, and iteration time in an array. As an internal class, it works with MessageHub, LoggerHook and LogProcessor to make training log configurable. Meanwhile, HistoryBuffer can also be used alone, which enables users to manage their training logs and do various statistics in an easy manner.

We will first introduce the usage of HistoryBuffer in the following section. The association between HistoryBuffer and MessageHub will be introduced later in the MessageHub section.


HistoryBuffer Initialization

HistoryBuffer accepts log_history, count_history and max_length for initialization.


	log_history records the history of the scaler. For example, if the loss in the previous 3 iterations is 0.3, 0.2, 0.1 respectively, there will be log_history=[0.3, 0.2, 0.1].


	count_history controls the statistical granularity and will be used when counting the average. Take the above example, if we count the average loss across iterations, we have count_history=[1, 1, 1]. Instead, if we count the average loss across images with batch_size=8, then we have count_history=[8, 8, 8].


	max_length controls the maximum length of the history. If the length of log_history and count_history exceeds max_length, the earliest elements will be removed.




Besides, we can access the history of the data through history_buffer.data.

from mmengine.logging import HistoryBuffer

history_buffer = HistoryBuffer()  # Default initialization
log_history, count_history = history_buffer.data
# [] []
history_buffer = HistoryBuffer([1, 2, 3], [1, 2, 3])  # Init with lists
log_history, count_history = history_buffer.data
# [1 2 3] [1 2 3]
history_buffer = HistoryBuffer([1, 2, 3], [1, 2, 3], max_length=2)
# The length of history buffer(3) exceeds the max_length(2), the first few elements will be ignored.
log_history, count_history = history_buffer.data
# [2 3] [2 3]







HistoryBuffer Update

We can update the log_history and count_history through HistoryBuffer.update(log_history, count_history).

history_buffer = HistoryBuffer([1, 2, 3], [1, 1, 1])
history_buffer.update(4)  # count default to 1
log_history, count_history = history_buffer.data
# [1, 2, 3, 4] [1, 1, 1, 1]
history_buffer.update(5, 2)
log_history, count_history = history_buffer.data
# [1, 2, 3, 4, 5] [1, 1, 1, 1, 2]







Basic Statistical Methods

HistoryBuffer provides some basic statistical methods:


	current(): Get the latest data.


	mean(window_size=None): Count the mean value of the previous window_size data. Defaults to None, as global mean.


	max(window_size=None): Count the max value of the previous window_size data. Defaults to None, as global maximum.


	min(window_size=None): Count the min value of the previous window_size data. Defaults to None, as global minimum.




history_buffer = HistoryBuffer([1, 2, 3], [1, 1, 1])
history_buffer.min(2)
# 2, the minimum in [2, 3]
history_buffer.min()
# 1, the global minimum

history_buffer.max(2)
# 3，the maximum in [2, 3]
history_buffer.min()
# 3, the global maximum
history_buffer.mean(2)
# 2.5，the mean value in [2, 3], (2 + 3) / (1 + 1)
history_buffer.mean()
# 2, the global mean, (1 + 2 + 3) / (1 + 1 + 1)
history_buffer = HistoryBuffer([1, 2, 3], [2, 2, 2])  # Cases when counts are not 1
history_buffer.mean()
# 1, (1 + 2 + 3) / (2 + 2 + 2)
history_buffer = HistoryBuffer([1, 2, 3], [1, 1, 1])
history_buffer.update(4, 1)
history_buffer.current()
# 4







Statistical Methods Invoking

Statistical methods can be accessed through HistoryBuffer.statistics with method name and arguments. The name parameter should be a registered method name (i.e. built-in methods like min and max), while arguments should be the corresponding method’s arguments.

history_buffer = HistoryBuffer([1, 2, 3], [1, 1, 1])
history_buffer.statistics('mean')
# 2, as global mean
history_buffer.statistics('mean', 2)
# 2.5, as the mean of [2, 3]
history_buffer.statistics('mean', 2, 3)
# Error! mismatch arguments given to `mean(window_size)`
history_buffer.statistics('data')
# Error! `data` method not registered







Statistical Methods Registration

Custom statistical methods can be registered through @HistoryBuffer.register_statistics.

from mmengine.logging import HistoryBuffer
import numpy as np


@HistoryBuffer.register_statistics
def weighted_mean(self, window_size, weight):
    assert len(weight) == window_size
    return (self._log_history[-window_size:] * np.array(weight)).sum() / \
            self._count_history[-window_size:]


history_buffer = HistoryBuffer([1, 2], [1, 1])
history_buffer.statistics('weighted_mean', 2, [2, 1])  # get (2 * 1 + 1 * 2) / (1 + 1)







Use Cases

logs = dict(lr=HistoryBuffer(), loss=HistoryBuffer())  # different keys for different logs
max_iter = 10
log_interval = 5
for iter in range(1, max_iter+1):
    lr = iter / max_iter * 0.1  # linear scaling of lr
    loss = 1 / iter  # loss
    logs['lr'].update(lr, 1)
    logs['loss'].update(loss, 1)
    if iter % log_interval == 0:
        latest_lr = logs['lr'].statistics('current')  # select statistical methods by name
        mean_loss = logs['loss'].statistics('mean', log_interval)  # mean loss of the latest `log_interval` iterations
        print(f'lr:   {latest_lr}\n'
              f'loss: {mean_loss}')
# lr:   0.05
# loss: 0.45666666666666667
# lr:   0.1
# loss: 0.12912698412698415








MessageHub

As shown above, HistoryBuffer can easily handle the update and statistics of a single variable. However, there are multiple variables to log during training, each potentially coming from a different module. This makes it an issue to collect and distribute different variables. To address this issue, we provide MessageHub in MMEngine. It is derived from ManagerMixin and thus can be accessed globally. It can be used to simplify the sharing of data across modules.

MessageHub stores data into 2 internal dictionaries, each has its own definition:


	log_scalars: Scalars including losses, learning rates and iteration time are collected from different modules and stored into the HistoryBuffer with corresponding key in this dict. Values in this dict will be formatted by LogProcessor and then output to terminal or saved locally. If you want to customize your logging info, you can add new keys to this dict and update in the subsequent training steps.


	runtime_info: Some runtime information including epochs and iterations are stored in this dict. This dict makes it easy to share some necessary information across modules.





Note

You may need to use MessageHub only if you want to add extra data to logs or share custom data across modules.



The following examples show the usage of MessageHub, including scalars update, data sharing and log customization.


Update & get training log

HistoryBuffers are stored in MessageHub’s log_scalars dictionary as values. You can call update_scalars method to update the HistoryBuffer with the given key. On first call with an unseen key, a HistoryBuffer will be initialized. In the subsequent calls with the same key, the corresponding HistoryBuffer’s update method will be invoked. You can get values or statistics of a HistoryBuffer by specifying a key in get_scalar method. You can also get full logs by directly accessing the log_scalars attribute of a MessageHub.

from mmengine import MessageHub

message_hub = MessageHub.get_instance('task')
message_hub.update_scalar('train/loss', 1, 1)
message_hub.get_scalar('train/loss').current()  # 1, the latest updated train/loss
message_hub.update_scalar('train/loss', 3, 1)
message_hub.get_scalar('train/loss').mean()  # 2, the mean calculated as (1 + 3) / (1 + 1)
message_hub.update_scalar('train/lr', 0.1, 1)

message_hub.update_scalars({'train/time': {'value': 0.1, 'count': 1},
                            'train/data_time': {'value': 0.1, 'count': 1}})

train_time = message_hub.get_scalar('train/time')  # 1

log_dict = message_hub.log_scalars  # return the whole dict
lr_buffer, loss_buffer, time_buffer, data_time_buffer = (
    log_dict['train/lr'], log_dict['train/loss'], log_dict['train/time'],
    log_dict['train/data_time'])






Note

Losses, learning rates and iteration time are automatically updated by runner and hooks. You are not supposed to manually update them.




Note

MessageHub has no special requirements for keys in log_scalars. However, MMEngine will only output a scalar to logs if it has a key prfixed with train/val/test.





Update & get runtime info

Runtime information is stored in runtime_info dict. The dict accepts data in any data types. Different from HistoryBuffer, the value will be overwritten on every update.

message_hub = MessageHub.get_instance('task')
message_hub.update_info('iter', 1)
message_hub.get_info('iter')  # 1
message_hub.update_info('iter', 2)
message_hub.get_info('iter')  # 2, overwritten by the above command







Share MessageHub across modules

During the execution of a runner, different modules receive and post data through MessageHub. Then, RuntimeInfoHook gathers data such as losses and learning rates before exporting them to user defined backends (Tensorboard, WandB, etc). Following is an example to show the communication between logger hook and other modules.

from mmengine import MessageHub

class LogProcessor:
    # gather data from other modules. similar to logger hook
    def __init__(self, name):
        self.message_hub = MessageHub.get_instance(name)  # access MessageHub

    def run(self):
        print(f"Learning rate is {self.message_hub.get_scalar('train/lr').current()}")
        print(f"loss is {self.message_hub.get_scalar('train/loss').current()}")
        print(f"meta is {self.message_hub.get_info('meta')}")


class LrUpdater:
    # update the learning rate
    def __init__(self, name):
        self.message_hub = MessageHub.get_instance(name)  # access MessageHub

    def run(self):
        self.message_hub.update_scalar('train/lr', 0.001)
        # update the learning rate, saved as HistoryBuffer


class MetaUpdater:
    # update meta information
    def __init__(self, name):
        self.message_hub = MessageHub.get_instance(name)

    def run(self):
        self.message_hub.update_info(
            'meta',
            dict(experiment='retinanet_r50_caffe_fpn_1x_coco.py',
                 repo='mmdetection'))    # meta info will be overwritten on every update


class LossUpdater:
    # update losses
    def __init__(self, name):
        self.message_hub = MessageHub.get_instance(name)

    def run(self):
        self.message_hub.update_scalar('train/loss', 0.1)

class ToyRunner:
    # compose of different modules
    def __init__(self, name):
        self.message_hub = MessageHub.get_instance(name)  # this will create a global MessageHub instance
        self.log_processor = LogProcessor(name)
        self.updaters = [LossUpdater(name),
                         MetaUpdater(name),
                         LrUpdater(name)]

    def run(self):
        for updater in self.updaters:
            updater.run()
        self.log_processor.run()

if __name__ == '__main__':
    task = ToyRunner('name')
    task.run()
    # Learning rate is 0.001
    # loss is 0.1
    # meta {'experiment': 'retinanet_r50_caffe_fpn_1x_coco.py', 'repo': 'mmdetection'}







Add custom logs

Users can update scalars in MessageHub anywhere in any module. All data in log_scalars with valid keys are exported to user defined backends after statistical methods.


Note

Only those data in log_scalars with keys prefixed with train/val/test are exported.



class CustomModule:
    def __init__(self):
        self.message_hub = MessageHub.get_current_instance()

    def custom_method(self):
        self.message_hub.update_scalar('train/a', 100)
        self.message_hub.update_scalars({'train/b': 1, 'train/c': 2})





By default, the latest value of the custom data(a, b and c) are exported. Users can also configure the LogProcessor to switch between statistical methods.




LogProcessor

Users can configure the LogProcessor to specify the statistical methods and extra arguments. By default, learning rates are displayed by the latest value, while losses and iteration time are counted with an iteration-based smooth method.


Minimum example

log_processor = dict(
    window_size=10
)





In this configuration, losses and iteration time will be averaged in the latest 10 iterations. The output might be:

04/15 12:34:24 - mmengine - INFO - Iter [10/12]  , eta: 0:00:00, time: 0.003, data_time: 0.002, loss: 0.13







Custom statistical methods

Users can configure the custom_cfg list to specify the statistical method. Each element in custom_cfg must be a dict consisting of the following keys:


	data_src: Required argument representing the data source of the log. A data source may have multiple statistical methods. Default sources, which are automatically added to logs, include all keys in loss dict(i.e. loss), learning rate(lr) and iteration time(time & data_time). Besides, all scalars updated by MessageHub’s update_scalar/update_scalars methods with valid keys are configurable data sources, but be aware that the prefix(‘train/’, ‘val/’, ‘test/’) should be removed.


	method_name: Required argument representing the statistical method. It supports both built-in methods and custom methods.


	log_name: Optional argument representing the output name after statistics. If not specified, the new log will overwrite the old one.


	Other arguments: Extra arguments needed by your specified method. window_size is a special key, which can be either an int, ‘epoch’ or ‘global’. LogProcessor will parse these arguments and return statistical result based on iteration/epoch/global smooth.





	Overwrite the old statistical method




log_processor = dict(
    window_size=10,
    by_epoch=True,
    custom_cfg=[
        dict(data_src='loss',
             method_name='mean',
             window_size=100)])





In this configuration, LogProcessor will overwrite the default window size 10 by a larger window size 100 and output the mean value to ‘loss’ field in logs.

04/15 12:34:24 - mmengine - INFO - Iter [10/12]  , eta: 0:00:00, time: 0.003, data_time: 0.002, loss: 0.11






	New statistical method without overwriting




log_processor = dict(
    window_size=10,
    by_epoch=True,
    custom_cfg=[
        dict(data_src='loss',
             log_name='loss_min',
             method_name='min',
             window_size=100)])





04/15 12:34:24 - mmengine - INFO - Iter [10/12]  , eta: 0:00:00, time: 0.003, data_time: 0.002, loss: 0.11, loss_min: 0.08








MMLogger

In order to export logs with clear hierarchies, unified formats and less disturbation from third-party logging systems, MMengine implements a MMLogger class based on logging. It is derived from ManagerMixin. Compared with logging.logger, it enables accessing logger in current runner without knowing the logger name.


Instantiate MMLogger

Users can create a global logger by calling get_instance. The default log format is shown as below

logger = MMLogger.get_instance('mmengine', log_level='INFO')
logger.info("this is a test")
# 04/15 14:01:11 - mmengine - INFO - this is a test





Apart from user defined messages, the logger will also export timestamps, logger name and log level. ERROR messages are treated specially with red highlight and extra information like error locations.

logger = MMLogger.get_instance('mmengine', log_level='INFO')
logger.error('division by zero')
# 04/15 14:01:56 - mmengine - ERROR - /mnt/d/PythonCode/DeepLearning/OpenMMLab/mmengine/a.py - <module> - 4 - division by zero







Export logs

When get_instance is invoked with log_file argument, logs will be additionally exported to local storage in text format.

logger = MMLogger.get_instance('mmengine', log_file='tmp.log', log_level='INFO')
logger.info("this is a test")
# 04/15 14:01:11 - mmengine - INFO - this is a test





tmp/tmp.log:

04/15 14:01:11 - mmengine - INFO - this is a test





Since distributed applications will create multiple log files, we add a directory with the same name to the exported log file name. Logs from different processes are all saved in this directory. Therefore, the actual log file path in the above example is tmp/tmp.log.



Export logs in distributed training

When training with pytorch distributed methods, users can set distributed=True or log_level='DEBUG' in config file to export multiple logs from all processes. If not specified, only master process will export log file.

logger = MMLogger.get_instance('mmengine', log_file='tmp.log', distributed=True, log_level='INFO')
# or
# logger = MMLogger.get_instance('mmengine', log_file='tmp.log', log_level='DEBUG')





In the case of multiple processes in a single node, or multiple processes in multiple nodes with shared storage, the exported log files have the following hierarchy

#  shared storage case
work_dir/20230228_141908
├── 20230306_183634_${hostname}_device0_rank0.log
├── 20230306_183634_${hostname}_device1_rank1.log
├── 20230306_183634_${hostname}_device2_rank2.log
├── 20230306_183634_${hostname}_device3_rank3.log
├── 20230306_183634_${hostname}_device4_rank4.log
├── 20230306_183634_${hostname}_device5_rank5.log
├── 20230306_183634_${hostname}_device6_rank6.log
├── 20230306_183634_${hostname}_device7_rank7.log
...
├── 20230306_183634_${hostname}_device7_rank63.log





In the case of multiple processes in multiple nodes without storage, logs are organized as follows

# without shared storage
# node 0：
work_dir/20230228_141908
├── 20230306_183634_${hostname}_device0_rank0.log
├── 20230306_183634_${hostname}_device1_rank1.log
├── 20230306_183634_${hostname}_device2_rank2.log
├── 20230306_183634_${hostname}_device3_rank3.log
├── 20230306_183634_${hostname}_device4_rank4.log
├── 20230306_183634_${hostname}_device5_rank5.log
├── 20230306_183634_${hostname}_device6_rank6.log
├── 20230306_183634_${hostname}_device7_rank7.log

# node 7：
work_dir/20230228_141908
├── 20230306_183634_${hostname}_device0_rank56.log
├── 20230306_183634_${hostname}_device1_rank57.log
├── 20230306_183634_${hostname}_device2_rank58.log
├── 20230306_183634_${hostname}_device3_rank59.log
├── 20230306_183634_${hostname}_device4_rank60.log
├── 20230306_183634_${hostname}_device5_rank61.log
├── 20230306_183634_${hostname}_device6_rank62.log
├── 20230306_183634_${hostname}_device7_rank63.log
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Infer

Coming soon. Please refer to chinese documentation [https://mmengine.readthedocs.io/zh_CN/latest/design/infer.html].




            

          

      

      

    

  

  
    
    

    Migrate Runner from MMCV to MMEngine
    

    

    

    
 
  

    
      
          
            
  
Migrate Runner from MMCV to MMEngine


Introduction

As MMCV supports more and more deep learning tasks, and users’ needs become much more complicated, we have higher requirements for the flexibility and versatility of the existing Runner of MMCV. Therefore, MMEngine implements a more general and flexible Runner based on MMCV to support more complicated training processes.

The Runner in MMEngine expands the scope and takes on more functions. we abstracted training loop controller (EpochBasedTrainLoop/IterBasedTrainLoop), validation loop controller (ValLoop) and TestLoop to make it more convenient for users to customize their training process.

Firstly, we will introduce how to migrate the entry point of training from MMCV to MMEngine, to simplify and unify the training script. Then, we’ll introduce the difference in the instantiation of Runner between MMCV and MMEngine in detail.



Migrate the entry point

Take MMDet as an example, the differences between training scripts in MMCV and MMEngine are as follows:


Migrate the configuration file



  
    	Configuration file based on MMCV Runner 
    	Configuration file based on MMEngine Runner


  	
# default_runtime.py
checkpoint_config = dict(interval=1)
log_config = dict(
    interval=50,
    hooks=[
        dict(type='TextLoggerHook'),
        # dict(type='TensorboardLoggerHook')
    ])
custom_hooks = [dict(type='NumClassCheckHook')]

dist_params = dict(backend='nccl')
log_level = 'INFO'
load_from = None
resume_from = None
workflow = [('train', 1)]


opencv_num_threads = 0
mp_start_method = 'fork'
auto_scale_lr = dict(enable=False, base_batch_size=16)







  
  	
# default_runtime.py
default_scope = 'mmdet'

default_hooks = dict(
    timer=dict(type='IterTimerHook'),
    logger=dict(type='LoggerHook', interval=50),
    param_scheduler=dict(type='ParamSchedulerHook'),
    checkpoint=dict(type='CheckpointHook', interval=1),
    sampler_seed=dict(type='DistSamplerSeedHook'),
    visualization=dict(type='DetVisualizationHook'))

env_cfg = dict(
    cudnn_benchmark=False,
    mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
    dist_cfg=dict(backend='nccl'),
)

vis_backends = [dict(type='LocalVisBackend')]
visualizer = dict(
    type='DetLocalVisualizer', vis_backends=vis_backends, name='visualizer')
log_processor = dict(type='LogProcessor', window_size=50, by_epoch=True)

log_level = 'INFO'
load_from = None
resume = False







  
  


  	
# scheduler.py
# optimizer
optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
optimizer_config = dict(grad_clip=None)
# learning policy
lr_config = dict(
    policy='step',
    warmup='linear',
    warmup_iters=500,
    warmup_ratio=0.001,
    step=[8, 11])
runner = dict(type='EpochBasedRunner', max_epochs=12)







  
  	
# scheduler.py
# training schedule for 1x
train_cfg = dict(type='EpochBasedTrainLoop', max_epochs=12, val_interval=1)
val_cfg = dict(type='ValLoop')
test_cfg = dict(type='TestLoop')

# learning rate
param_scheduler = [
    dict(
        type='LinearLR', start_factor=0.001, by_epoch=False, begin=0, end=500),
    dict(
        type='MultiStepLR',
        begin=0,
        end=12,
        by_epoch=True,
        milestones=[8, 11],
        gamma=0.1)
]

# optimizer
optim_wrapper = dict(
    type='OptimWrapper',
    optimizer=dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001))

# Default setting for scaling LR automatically
#   - `enable` means enable scaling LR automatically
#       or not by default.
#   - `base_batch_size` = (8 GPUs) x (2 samples per GPU).
auto_scale_lr = dict(enable=False, base_batch_size=16)







  



  	
# coco_detection.py

# dataset settings
dataset_type = 'CocoDataset'
data_root = 'data/coco/'
img_norm_cfg = dict(
    mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True)
train_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(type='LoadAnnotations', with_bbox=True),
    dict(type='Resize', img_scale=(1333, 800), keep_ratio=True),
    dict(type='RandomFlip', flip_ratio=0.5),
    dict(type='Normalize', **img_norm_cfg),
    dict(type='Pad', size_divisor=32),
    dict(type='DefaultFormatBundle'),
    dict(type='Collect', keys=['img', 'gt_bboxes', 'gt_labels']),
]
test_pipeline = [
    dict(type='LoadImageFromFile'),
    dict(
        type='MultiScaleFlipAug',
        img_scale=(1333, 800),
        flip=False,
        transforms=[
            dict(type='Resize', keep_ratio=True),
            dict(type='RandomFlip'),
            dict(type='Normalize', **img_norm_cfg),
            dict(type='Pad', size_divisor=32),
            dict(type='ImageToTensor', keys=['img']),
            dict(type='Collect', keys=['img']),
        ])
]
data = dict(
    samples_per_gpu=2,
    workers_per_gpu=2,
    train=dict(
        type=dataset_type,
        ann_file=data_root + 'annotations/instances_train2017.json',
        img_prefix=data_root + 'train2017/',
        pipeline=train_pipeline),
    val=dict(
        type=dataset_type,
        ann_file=data_root + 'annotations/instances_val2017.json',
        img_prefix=data_root + 'val2017/',
        pipeline=test_pipeline),
    test=dict(
        type=dataset_type,
        ann_file=data_root + 'annotations/instances_val2017.json',
        img_prefix=data_root + 'val2017/',
        pipeline=test_pipeline))
evaluation = dict(interval=1, metric='bbox')







  
  	
# coco_detection.py

# dataset settings
dataset_type = 'CocoDataset'
data_root = 'data/coco/'

file_client_args = dict(backend='disk')

train_pipeline = [
    dict(type='LoadImageFromFile', file_client_args=file_client_args),
    dict(type='LoadAnnotations', with_bbox=True),
    dict(type='Resize', scale=(1333, 800), keep_ratio=True),
    dict(type='RandomFlip', prob=0.5),
    dict(type='PackDetInputs')
]
test_pipeline = [
    dict(type='LoadImageFromFile', file_client_args=file_client_args),
    dict(type='Resize', scale=(1333, 800), keep_ratio=True),
    # If you don't have a gt annotation, delete the pipeline
    dict(type='LoadAnnotations', with_bbox=True),
    dict(
        type='PackDetInputs',
        meta_keys=('img_id', 'img_path', 'ori_shape', 'img_shape',
                   'scale_factor'))
]
train_dataloader = dict(
    batch_size=2,
    num_workers=2,
    persistent_workers=True,
    sampler=dict(type='DefaultSampler', shuffle=True),
    batch_sampler=dict(type='AspectRatioBatchSampler'),
    dataset=dict(
        type=dataset_type,
        data_root=data_root,
        ann_file='annotations/instances_train2017.json',
        data_prefix=dict(img='train2017/'),
        filter_cfg=dict(filter_empty_gt=True, min_size=32),
        pipeline=train_pipeline))
val_dataloader = dict(
    batch_size=1,
    num_workers=2,
    persistent_workers=True,
    drop_last=False,
    sampler=dict(type='DefaultSampler', shuffle=False),
    dataset=dict(
        type=dataset_type,
        data_root=data_root,
        ann_file='annotations/instances_val2017.json',
        data_prefix=dict(img='val2017/'),
        test_mode=True,
        pipeline=test_pipeline))
test_dataloader = val_dataloader

val_evaluator = dict(
    type='CocoMetric',
    ann_file=data_root + 'annotations/instances_val2017.json',
    metric='bbox',
    format_only=False)
test_evaluator = val_evaluator
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Migrate Hook from MMCV to MMEngine

Coming soon. Please refer to chinese documentation [https://mmengine.readthedocs.io/zh_CN/latest/migration/hook.html].
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Migrate Model from MMCV to MMEngine


Introduction

The early computer vision tasks supported by MMCV, such as detection and classification, used a general process to optimize model. It can be summarized as the following four steps:


	Calculate the loss


	Calculate the gradients


	Update the model parameters


	Clean the gradients of the last iteration




For most of the high-level tasks, “where” and “when” to perform the above processes is commonly fixed, therefore it seems reasonable to use Hook to implement it. MMCV implements series of hooks, such as OptimizerHook, Fp16OptimizerHook and GradientCumulativeFp16OptimizerHook to provide varies of optimization strategies.

On the other hand, tasks like GAN (Generative adversarial network) and Self-supervision require more flexible training processes, which do not meet the characteristics mentioned above, and it could be hard to use hooks to implement them. To meet the needs of these tasks, MMCV will pass optimizer to train_step and users can customize the optimization process as they want. Although it works, it cannot utilize various OptimizerHook implemented in MMCV, and downstream repositories have to implement mix-precision training, and gradient accumulation on their own.

To unify the training process of various deep learning tasks, MMEngine designed the OptimWrapper, which integrates the mixed-precision training, gradient accumulation and other optimization strategies into a unified interface.



Migrate optimization process

Since MMEngine designs the OptimWrapper and deprecates series of OptimizerHook, there would be some differences between the optimization process in MMCV and MMEngine.


Commonly used optimization process

Considering tasks like detection and classification, the optimization process is usually the same, so BaseModel integrates the process into train_step.

Model based on MMCV

Before describing how to migrate the model, let’s look at a minimal example to train a model based on the MMCV.

import torch
import torch.nn as nn
from torch.optim import SGD
from torch.utils.data import DataLoader

from mmcv.runner import Runner
from mmcv.utils.logging import get_logger


train_dataset = [(torch.ones(1, 1), torch.ones(1, 1))] * 50
train_dataloader = DataLoader(train_dataset, batch_size=2)


class MMCVToyModel(nn.Module):
    def __init__(self) -> None:
        super().__init__()
        self.linear = nn.Linear(1, 1)

    def forward(self, img, label, return_loss=False):
        feat = self.linear(img)
        loss1 = (feat - label).pow(2)
        loss2 = (feat - label).abs()
        loss = (loss1 + loss2).sum()
        return dict(loss=loss,
                    num_samples=len(img),
                    log_vars=dict(
                        loss1=loss1.sum().item(),
                        loss2=loss2.sum().item()))

    def train_step(self, data, optimizer=None):
        return self(*data, return_loss=True)

    def val_step(self, data, optimizer=None):
        return self(*data, return_loss=False)


model = MMCVToyModel()
optimizer = SGD(model.parameters(), lr=0.01)
logger = get_logger('demo')

lr_config = dict(policy='step', step=[2, 3])
optimizer_config = dict(grad_clip=None)
log_config = dict(interval=10, hooks=[dict(type='TextLoggerHook')])


runner = Runner(
    model=model,
    work_dir='tmp_dir',
    optimizer=optimizer,
    logger=logger,
    max_epochs=5)

runner.register_training_hooks(
    lr_config=lr_config,
    optimizer_config=optimizer_config,