

Welcome to MMEngine’s documentation!

You can switch between Chinese and English documents in the lower-left corner of the layout.

Get Started

	Introduction

	Installation

	15 minutes to get started with MMEngine

Examples

	Train a GAN

	Train a Segmentation Model

Common Usage

	Resume Training

	Distributed Training

	Speed up Training

	Save Memory on GPU

	Training Big Models

	Better performance optimizers

	Visualize Training Logs

	Set Random Seed

	Debug Tricks

	Calculate the FLOPs and Parameters of Model

	Setting the Frequency of Logging, Checkpoint Saving, and Validation

	EpochBasedTraining to IterBasedTraining

Tutorials

	Runner
	Example codes of the runner
	A beginer-friendly example

	Explanations on example codes

	Best practice of the Runner - config files

	Basic dataflow

	Why use the runner? (Optional reading)

	Suggestions on next steps

	Dataset and DataLoader
	Details on dataloader
	sampler and shuffle

	DefaultSampler

	The obscure collate_fn

	Details on dataset
	Use torchvision datasets

	Customize your dataset

	Use MMEngine BaseDataset

	Model
	Runner and model

	Interface introduction

	DataPreprocessor

	Evaluation
	Evaluation in model training or testing
	Using a single evaluation metric

	Using multiple evaluation metrics

	Customizing evaluation metrics

	Using offline results for evaluation

	OptimWrapper
	OptimWrapper vs Optimizer
	Model training

	Get learning rate/momentum

	Export/load state dicts

	Use multiple optimizers

	Configure the OptimWapper in Runner

	Advanced usages
	Set different hyperparamters for different types of parameters

	Set different hyperparamters for different model modules

	Customize optimizer construction policies

	Adjust hyperparameters during training

	Parameter Scheduler
	Usage
	Use a single LRScheduler

	Combine multiple LRSchedulers (e.g. learning rate warm-up)

	How to adjust other hyperparameters
	Momentum

	Generic parameter scheduler

	Hook
	Built-in Hooks
	LoggerHook

	CheckpointHook

	ParamSchedulerHook

	IterTimerHook

	DistSamplerSeedHook

	RuntimeInfoHook

	EMAHook

	EmptyCacheHook

	SyncBuffersHook

	Customize Your Hooks

Advanced tutorials

	Registry

	Config

	BaseDataset

	Data transform

	Weight initialization

	Visualization

	Abstract Data Element

	Distribution Communication

	Logging

	File IO

	Global manager (ManagerMixin)

	Use modules from other libraries

	Test time augmentation

	Model Complexity Analysis

Design

	Hook

	Runner

	Evaluation

	Visualization

	Logging

	Inference

Migration guide

	Migrate Runner from MMCV to MMEngine

	Migrate Hook from MMCV to MMEngine

	Migrate Model from MMCV to MMEngine

	Migrate parameter scheduler from MMCV to MMEngine

	Migrate Data Transform to OpenMMLab 2.0

API Reference

	mmengine.analysis
	ActivationAnalyzer

	FlopAnalyzer

	mmengine.analysis.activation_count

	mmengine.analysis.flop_count

	mmengine.analysis.parameter_count

	mmengine.analysis.parameter_count_table

	mmengine.analysis.get_model_complexity_info

	mmengine.registry
	Registry

	DefaultScope

	mmengine.registry.build_from_cfg

	mmengine.registry.build_model_from_cfg

	mmengine.registry.build_runner_from_cfg

	mmengine.registry.build_scheduler_from_cfg

	mmengine.registry.count_registered_modules

	mmengine.registry.traverse_registry_tree

	mmengine.registry.init_default_scope

	mmengine.config
	Config

	ConfigDict

	DictAction

	read_base

	mmengine.runner
	Runner

	Loop

	Checkpoints

	AMP

	Miscellaneous

	mmengine._strategy
	BaseStrategy

	SingleDeviceStrategy

	DDPStrategy

	DeepSpeedStrategy

	FSDPStrategy

	ColossalAIStrategy

	MMDeepSpeedEngineWrapper

	DeepSpeedOptimWrapper

	CollosalAIModelWrapper

	ColossalAIOptimWrapper

	mmengine.hooks
	Hook

	CheckpointHook

	EMAHook

	LoggerHook

	NaiveVisualizationHook

	ParamSchedulerHook

	RuntimeInfoHook

	DistSamplerSeedHook

	IterTimerHook

	SyncBuffersHook

	EmptyCacheHook

	ProfilerHook

	NPUProfilerHook

	PrepareTTAHook

	EarlyStoppingHook

	mmengine.model
	Module

	Model

	EMA

	Model Wrapper

	Weight Initialization

	Utils

	mmengine.optim
	Optimizer

	Scheduler

	mmengine.evaluator
	Evaluator

	Metric

	Utils

	mmengine.structures
	BaseDataElement

	InstanceData

	LabelData

	PixelData

	mmengine.dataset
	Dataset

	Dataset Wrapper

	Sampler

	Utils

	mmengine.infer
	BaseInferencer

	mmengine.device
	mmengine.device.get_device

	mmengine.device.get_max_cuda_memory

	mmengine.device.is_cuda_available

	mmengine.device.is_npu_available

	mmengine.device.is_mlu_available

	mmengine.device.is_mps_available

	mmengine.hub
	mmengine.hub.get_config

	mmengine.hub.get_model

	mmengine.logging
	MMLogger

	MessageHub

	HistoryBuffer

	mmengine.logging.print_log

	mmengine.visualization
	Visualizer

	visualization Backend

	mmengine.fileio
	File Backend

	File Handler

	File IO

	Parse File

	mmengine.dist
	dist

	utils

	mmengine.utils
	Manager

	Path

	Package

	Version

	Progress Bar

	Miscellaneous

	mmengine.utils.dl_utils
	TimeCounter

	mmengine.utils.dl_utils.collect_env

	mmengine.utils.dl_utils.load_url

	mmengine.utils.dl_utils.has_batch_norm

	mmengine.utils.dl_utils.is_norm

	mmengine.utils.dl_utils.mmcv_full_available

	mmengine.utils.dl_utils.tensor2imgs

	mmengine.utils.dl_utils.TORCH_VERSION

	mmengine.utils.dl_utils.set_multi_processing

	mmengine.utils.dl_utils.torch_meshgrid

	mmengine.utils.dl_utils.is_jit_tracing

Notes

	Changelog of v0.x
	v0.9.1 (03/11/2023)

	v0.9.0 (10/10/2023)

	v0.8.4 (03/08/2023)

	v0.8.3 (31/07/2023)

	v0.8.2 (07/12/2023)

	v0.8.1 (07/05/2023)

	v0.8.0 (06/30/2023)

	v0.7.4 (06/03/2023)

	v0.7.3 (04/28/2023)

	v0.7.2 (04/06/2023)

	v0.7.1 (04/03/2023)

	v0.7.0 (03/16/2023)

	v0.6.0 (02/24/2023)

	v0.5.0 (01/20/2023)

	v0.4.0 (12/28/2022)

	v0.3.2 (11/24/2022)

	v0.3.1 (11/09/2022)

	v0.3.0 (11/02/2022)

	v0.2.0 (10/11/2022)

	Contributing to OpenMMLab
	Pull Request Workflow

	Guidance

	Python Code style

	PR Specs

Switch Language

	English

	简体中文

Indices and tables

	Index

	Module Index

	Search Page

Introduction

MMEngine is a foundational library for training deep learning models based on
PyTorch. It supports running on Linux, Windows, and macOS. It has the
following three features:

	Universal and powerful executor:

	Supports training different tasks with minimal code, such as training
ImageNet with just 80 lines of code (original PyTorch examples require
400 lines).

	Easily compatible with models from popular algorithm libraries like TIMM,
TorchVision, and Detectron2.

	Open architecture with unified interfaces:

	Handles different tasks with a unified API: you can implement a method
once and apply it to all compatible models.

	Supports various backend devices through a simple, high-level
abstraction. Currently, MMEngine supports model training on Nvidia CUDA,
Mac MPS, AMD, MLU, and other devices.

	Customizable training process:

	Defines a highly modular training engine with “Lego”-like composability.

	Offers a rich set of components and strategies.

	Total control over the training process with different levels of APIs.

Architecture

[image: openmmlab-2.0-arch]

The above diagram illustrates the hierarchy of MMEngine in OpenMMLab 2.0.
MMEngine implements a next-generation training architecture for the OpenMMLab
algorithm library, providing a unified execution foundation for over 30
algorithm libraries within OpenMMLab. Its core components include the training
engine, evaluation engine, and module management.

Module Introduction

MMEngine abstracts the components involved in the training process and their
relationships. Components of the same type in different algorithm libraries
share the same interface definition.

Core Modules and Related Components

The core module of the training engine is the
Runner. The Runner is responsible for executing
training, testing, and inference tasks and managing the various components
required during these processes. In specific locations throughout the
execution of training, testing, and inference tasks, the Runner sets up Hooks
to allow users to extend, insert, and execute custom logic. The Runner
primarily invokes the following components to complete the training and
inference loops:

	Dataset: Responsible for constructing datasets in
training, testing, and inference tasks, and feeding the data to the model.
In usage, it is wrapped by a PyTorch DataLoader, which launches multiple
subprocesses to load the data.

	Model: Accepts data and outputs the loss during the
training process; accepts data and performs predictions during testing and
inference tasks. In a distributed environment, the model is wrapped by a
Model Wrapper (e.g., MMDistributedDataParallel).

	Optimizer Wrapper: The optimizer wrapper
performs backpropagation to optimize the model during the training process
and supports mixed-precision training and gradient accumulation through a
unified interface.

	Parameter Scheduler: Dynamically adjusts
optimizer hyperparameters such as learning rate and momentum during the
training process.

During training intervals or testing phases, the Metrics &
Evaluator are responsible for evaluating the
performance of the model. The Evaluator evaluates the model’s predictions
based on the dataset. Within the Evaluator, there is an abstraction called
Metrics, which calculates various metrics such as recall, accuracy, and
others.

To ensure a unified interface, the communication interfaces between the
evaluators, models, and data in various algorithm libraries within OpenMMLab
2.0 are encapsulated using
Data Elements.

During training and inference execution, the aforementioned components can
utilize the logging management module and visualizer for structured and
unstructured logging storage and visualization. Logging
Modules: Responsible for managing various
log information generated during the execution of the Runner. The Message Hub
implements data sharing between components, runners, and log processors, while
the Log Processor processes the log information. The processed logs are then
sent to the Logger and Visualizer for management and display. The
Visualizer is responsible for
visualizing the model’s feature maps, prediction results, and structured logs
generated during the training process. It supports multiple visualization
backends such as TensorBoard and WanDB.

Common Base Modules

MMEngine also implements various common base modules required during the
execution of algorithmic models, including:

	Config: In the OpenMMLab algorithm library, users can configure the training, testing process,
and related components by writing a configuration file (config).

	Registry: Responsible for managing
modules within the algorithm library that have similar functionality. Based on the abstraction of algorithm library modules, MMEngine defines a set of root registries. Registries within the algorithm library can inherit from these root registries, enabling cross-algorithm library module invocations and interactions. This allows for seamless integration and utilization of modules across different algorithms within the OpenMMLab framework.

	File I/O: Provides a unified interface
for file read/write operations in various modules, supporting multiple file
backend systems and formats in a consistent manner, with extensibility.

	Distributed Communication Primitives:
Handles communication between different processes during distributed program
execution. This interface abstracts the differences between distributed and
non-distributed environments and automatically handles data devices and
communication backends.

	Other Utilities: There are also
utility modules, such as ManagerMixin, which implements a way to create
and access global variables. The base class for many globally accessible
objects within the Runner is ManagerMixin.

Users can further read the tutorials to understand the advanced usage of these
modules or refer to the design documents to understand their design principles
and details.

Installation

Prerequisites

	Python 3.7+

	PyTorch 1.6+

	CUDA 9.2+

	GCC 5.4+

Prepare the Environment

	Use conda and activate the environment:

conda create -n open-mmlab python=3.7 -y
conda activate open-mmlab

	Install PyTorch

Before installing MMEngine, please make sure that PyTorch has been successfully installed in the environment. You can refer to PyTorch official installation documentation [https://pytorch.org/get-started/locally/#start-locally]. Verify the installation with the following command:

python -c 'import torch;print(torch.__version__)'

Install MMEngine

Note

If you only want to use the fileio, registry, and config modules in MMEngine, you can set the MMENGINE_LITE environment variable, which will only install the few third-party library dependencies that are necessary (e.g., it will not install opencv, matplotlib):

MMENGINE_LITE=1 pip install mmengine

Install with mim

mim [https://github.com/open-mmlab/mim] is a package management tool for OpenMMLab projects, which can be used to install the OpenMMLab project easily.

pip install -U openmim
mim install mmengine

Install with pip

pip install mmengine

Use docker images

	Build the image

docker build -t mmengine https://github.com/open-mmlab/mmengine.git#main:docker/release

More information can be referred from mmengine/docker [https://github.com/open-mmlab/mmengine/tree/main/docker].

	Run the image

docker run --gpus all --shm-size=8g -it mmengine

Build from source

if cloning speed is too slow, you can switch the source to https://gitee.com/open-mmlab/mmengine.git
git clone https://github.com/open-mmlab/mmengine.git
cd mmengine
pip install -e . -v

Verify the Installation

To verify if MMEngine and the necessary environment are successfully installed, we can run this command:

python -c 'import mmengine;print(mmengine.__version__)'

15 minutes to get started with MMEngine

In this tutorial, we’ll take training a ResNet-50 model on CIFAR-10 dataset as an example. We will build a complete and configurable pipeline for both training and validation in only 80 lines of code with MMEgnine.
The whole process includes the following steps:

	15 minutes to get started with MMEngine

	Build a Model

	Build a Dataset and DataLoader

	Build a Evaluation Metrics

	Build a Runner and Run the Task

Build a Model

First, we need to build a model. In MMEngine, the model should inherit from BaseModel. Aside from parameters representing inputs from the dataset, its forward method needs to accept an extra argument called mode:

	for training, the value of mode is “loss,” and the forward method should return a dict containing the key “loss”.

	for validation, the value of mode is “predict”, and the forward method should return results containing both predictions and labels.

import torch.nn.functional as F
import torchvision
from mmengine.model import BaseModel

class MMResNet50(BaseModel):
 def __init__(self):
 super().__init__()
 self.resnet = torchvision.models.resnet50()

 def forward(self, imgs, labels, mode):
 x = self.resnet(imgs)
 if mode == 'loss':
 return {'loss': F.cross_entropy(x, labels)}
 elif mode == 'predict':
 return x, labels

Build a Dataset and DataLoader

Next, we need to create Dataset and DataLoader for training and validation.
For basic training and validation, we can simply use built-in datasets supported in TorchVision.

import torchvision.transforms as transforms
from torch.utils.data import DataLoader

norm_cfg = dict(mean=[0.491, 0.482, 0.447], std=[0.202, 0.199, 0.201])
train_dataloader = DataLoader(batch_size=32,
 shuffle=True,
 dataset=torchvision.datasets.CIFAR10(
 'data/cifar10',
 train=True,
 download=True,
 transform=transforms.Compose([
 transforms.RandomCrop(32, padding=4),
 transforms.RandomHorizontalFlip(),
 transforms.ToTensor(),
 transforms.Normalize(**norm_cfg)
])))

val_dataloader = DataLoader(batch_size=32,
 shuffle=False,
 dataset=torchvision.datasets.CIFAR10(
 'data/cifar10',
 train=False,
 download=True,
 transform=transforms.Compose([
 transforms.ToTensor(),
 transforms.Normalize(**norm_cfg)
])))

Build a Evaluation Metrics

To validate and test the model, we need to define a Metric called accuracy to evaluate the model. This metric needs inherit from BaseMetric and implements the process and compute_metrics methods where the process method accepts the output of the dataset and other outputs when mode="predict". The output data at this scenario is a batch of data. After processing this batch of data, we save the information to self.results property.
compute_metrics accepts a results parameter. The input results of compute_metrics is all the information saved in process (In the case of a distributed environment, results are the information collected from all process in all the processes). Use these information to calculate and return a dict that holds the results of the evaluation metrics

from mmengine.evaluator import BaseMetric

class Accuracy(BaseMetric):
 def process(self, data_batch, data_samples):
 score, gt = data_samples
 # save the middle result of a batch to `self.results`
 self.results.append({
 'batch_size': len(gt),
 'correct': (score.argmax(dim=1) == gt).sum().cpu(),
 })

 def compute_metrics(self, results):
 total_correct = sum(item['correct'] for item in results)
 total_size = sum(item['batch_size'] for item in results)
 # return the dict containing the eval results
 # the key is the name of the metric name
 return dict(accuracy=100 * total_correct / total_size)

Build a Runner and Run the Task

Now we can build a Runner with previously defined Model, DataLoader, and Metrics, and some other configs shown as follows:

from torch.optim import SGD
from mmengine.runner import Runner

runner = Runner(
 # the model used for training and validation.
 # Needs to meet specific interface requirements
 model=MMResNet50(),
 # working directory which saves training logs and weight files
 work_dir='./work_dir',
 # train dataloader needs to meet the PyTorch data loader protocol
 train_dataloader=train_dataloader,
 # optimize wrapper for optimization with additional features like
 # AMP, gradtient accumulation, etc
 optim_wrapper=dict(optimizer=dict(type=SGD, lr=0.001, momentum=0.9)),
 # trainging coinfs for specifying training epoches, verification intervals, etc
 train_cfg=dict(by_epoch=True, max_epochs=5, val_interval=1),
 # validation dataloaer also needs to meet the PyTorch data loader protocol
 val_dataloader=val_dataloader,
 # validation configs for specifying additional parameters required for validation
 val_cfg=dict(),
 # validation evaluator. The default one is used here
 val_evaluator=dict(type=Accuracy),
)

runner.train()

Finally, let’s put all the codes above together into a complete script that uses the MMEngine executor for training and validation:

[image: Open in Colab]

import torch.nn.functional as F
import torchvision
import torchvision.transforms as transforms
from torch.optim import SGD
from torch.utils.data import DataLoader

from mmengine.evaluator import BaseMetric
from mmengine.model import BaseModel
from mmengine.runner import Runner

class MMResNet50(BaseModel):
 def __init__(self):
 super().__init__()
 self.resnet = torchvision.models.resnet50()

 def forward(self, imgs, labels, mode):
 x = self.resnet(imgs)
 if mode == 'loss':
 return {'loss': F.cross_entropy(x, labels)}
 elif mode == 'predict':
 return x, labels

class Accuracy(BaseMetric):
 def process(self, data_batch, data_samples):
 score, gt = data_samples
 self.results.append({
 'batch_size': len(gt),
 'correct': (score.argmax(dim=1) == gt).sum().cpu(),
 })

 def compute_metrics(self, results):
 total_correct = sum(item['correct'] for item in results)
 total_size = sum(item['batch_size'] for item in results)
 return dict(accuracy=100 * total_correct / total_size)

norm_cfg = dict(mean=[0.491, 0.482, 0.447], std=[0.202, 0.199, 0.201])
train_dataloader = DataLoader(batch_size=32,
 shuffle=True,
 dataset=torchvision.datasets.CIFAR10(
 'data/cifar10',
 train=True,
 download=True,
 transform=transforms.Compose([
 transforms.RandomCrop(32, padding=4),
 transforms.RandomHorizontalFlip(),
 transforms.ToTensor(),
 transforms.Normalize(**norm_cfg)
])))

val_dataloader = DataLoader(batch_size=32,
 shuffle=False,
 dataset=torchvision.datasets.CIFAR10(
 'data/cifar10',
 train=False,
 download=True,
 transform=transforms.Compose([
 transforms.ToTensor(),
 transforms.Normalize(**norm_cfg)
])))

runner = Runner(
 model=MMResNet50(),
 work_dir='./work_dir',
 train_dataloader=train_dataloader,
 optim_wrapper=dict(optimizer=dict(type=SGD, lr=0.001, momentum=0.9)),
 train_cfg=dict(by_epoch=True, max_epochs=5, val_interval=1),
 val_dataloader=val_dataloader,
 val_cfg=dict(),
 val_evaluator=dict(type=Accuracy),
)
runner.train()

Training log would be similar to this:

2022/08/22 15:51:53 - mmengine - INFO -
--
System environment:
 sys.platform: linux
 Python: 3.8.12 (default, Oct 12 2021, 13:49:34) [GCC 7.5.0]
 CUDA available: True
 numpy_random_seed: 1513128759
 GPU 0: NVIDIA GeForce GTX 1660 SUPER
 CUDA_HOME: /usr/local/cuda
...

2022/08/22 15:51:54 - mmengine - INFO - Checkpoints will be saved to /home/mazerun/work_dir by HardDiskBackend.
2022/08/22 15:51:56 - mmengine - INFO - Epoch(train) [1][10/1563] lr: 1.0000e-03 eta: 0:18:23 time: 0.1414 data_time: 0.0077 memory: 392 loss: 5.3465
2022/08/22 15:51:56 - mmengine - INFO - Epoch(train) [1][20/1563] lr: 1.0000e-03 eta: 0:11:29 time: 0.0354 data_time: 0.0077 memory: 392 loss: 2.7734
2022/08/22 15:51:56 - mmengine - INFO - Epoch(train) [1][30/1563] lr: 1.0000e-03 eta: 0:09:10 time: 0.0352 data_time: 0.0076 memory: 392 loss: 2.7789
2022/08/22 15:51:57 - mmengine - INFO - Epoch(train) [1][40/1563] lr: 1.0000e-03 eta: 0:08:00 time: 0.0353 data_time: 0.0073 memory: 392 loss: 2.5725
2022/08/22 15:51:57 - mmengine - INFO - Epoch(train) [1][50/1563] lr: 1.0000e-03 eta: 0:07:17 time: 0.0347 data_time: 0.0073 memory: 392 loss: 2.7382
2022/08/22 15:51:57 - mmengine - INFO - Epoch(train) [1][60/1563] lr: 1.0000e-03 eta: 0:06:49 time: 0.0347 data_time: 0.0072 memory: 392 loss: 2.5956
2022/08/22 15:51:58 - mmengine - INFO - Epoch(train) [1][70/1563] lr: 1.0000e-03 eta: 0:06:28 time: 0.0348 data_time: 0.0072 memory: 392 loss: 2.7351
...
2022/08/22 15:52:50 - mmengine - INFO - Saving checkpoint at 1 epochs
2022/08/22 15:52:51 - mmengine - INFO - Epoch(val) [1][10/313] eta: 0:00:03 time: 0.0122 data_time: 0.0047 memory: 392
2022/08/22 15:52:51 - mmengine - INFO - Epoch(val) [1][20/313] eta: 0:00:03 time: 0.0122 data_time: 0.0047 memory: 308
2022/08/22 15:52:51 - mmengine - INFO - Epoch(val) [1][30/313] eta: 0:00:03 time: 0.0123 data_time: 0.0047 memory: 308
...
2022/08/22 15:52:54 - mmengine - INFO - Epoch(val) [1][313/313] accuracy: 35.7000

The corresponding implementation of PyTorch and MMEngine:

[image: output]

In addition to these basic components, you can also use executor to easily combine and configure various training techniques, such as enabling mixed-precision training and gradient accumulation (see OptimWrapper), configuring the learning rate decay curve (see Metrics & Evaluator), and etc.

Train a GAN

Generative Adversarial Network (GAN) can be used to generate data such as images and videos. This tutorial will show you how to train a GAN with MMEngine step by step!

It will be divided into the following steps:

	Train Generative Adversarial Network

	Build a DataLoader

	Build a Dataset

	Build a Generator Network and a Discriminator Network

	Build a Generative Adversarial Network Model

	Build an Optimizer

	Train with Runner

Building a DataLoader

Building a Dataset

First, we will build a dataset class MNISTDataset for the MNIST dataset, inheriting from the base dataset class BaseDataset, and overwrite the load_data_list function of the base dataset class to ensure that the return value is a list[dict], where each dict represents a data sample.
More details about using datasets in MMEngine, refer to the Dataset tutorial.

import numpy as np
from mmcv.transforms import to_tensor
from torch.utils.data import random_split
from torchvision.datasets import MNIST

from mmengine.dataset import BaseDataset

class MNISTDataset(BaseDataset):

 def __init__(self, data_root, pipeline, test_mode=False):
 # Download MNIST Dataset
 if test_mode:
 mnist_full = MNIST(data_root, train=True, download=True)
 self.mnist_dataset, _ = random_split(mnist_full, [55000, 5000])
 else:
 self.mnist_dataset = MNIST(data_root, train=False, download=True)

 super().__init__(
 data_root=data_root, pipeline=pipeline, test_mode=test_mode)

 @staticmethod
 def totensor(img):
 if len(img.shape) < 3:
 img = np.expand_dims(img, -1)
 img = np.ascontiguousarray(img.transpose(2, 0, 1))
 return to_tensor(img)

 def load_data_list(self):
 return [
 dict(inputs=self.totensor(np.array(x[0]))) for x in self.mnist_dataset
]

dataset = MNISTDataset("./data", [])

Use the function build_dataloader in Runner to build the dataloader.

import os
import torch
from mmengine.runner import Runner

NUM_WORKERS = int(os.cpu_count() / 2)
BATCH_SIZE = 256 if torch.cuda.is_available() else 64

train_dataloader = dict(
 batch_size=BATCH_SIZE,
 num_workers=NUM_WORKERS,
 persistent_workers=True,
 sampler=dict(type='DefaultSampler', shuffle=True),
 dataset=dataset)
train_dataloader = Runner.build_dataloader(train_dataloader)

Build a Generator Network and a Discriminator Network

The following code builds and instantiates a Generator and a Discriminator.

import torch.nn as nn

class Generator(nn.Module):
 def __init__(self, noise_size, img_shape):
 super().__init__()
 self.img_shape = img_shape
 self.noise_size = noise_size

 def block(in_feat, out_feat, normalize=True):
 layers = [nn.Linear(in_feat, out_feat)]
 if normalize:
 layers.append(nn.BatchNorm1d(out_feat, 0.8))
 layers.append(nn.LeakyReLU(0.2, inplace=True))
 return layers

 self.model = nn.Sequential(
 *block(noise_size, 128, normalize=False),
 *block(128, 256),
 *block(256, 512),
 *block(512, 1024),
 nn.Linear(1024, int(np.prod(img_shape))),
 nn.Tanh(),
)

 def forward(self, z):
 img = self.model(z)
 img = img.view(img.size(0), *self.img_shape)
 return img

class Discriminator(nn.Module):
 def __init__(self, img_shape):
 super().__init__()

 self.model = nn.Sequential(
 nn.Linear(int(np.prod(img_shape)), 512),
 nn.LeakyReLU(0.2, inplace=True),
 nn.Linear(512, 256),
 nn.LeakyReLU(0.2, inplace=True),
 nn.Linear(256, 1),
 nn.Sigmoid(),
)

 def forward(self, img):
 img_flat = img.view(img.size(0), -1)
 validity = self.model(img_flat)

 return validity

generator = Generator(100, (1, 28, 28))
discriminator = Discriminator((1, 28, 28))

Build a Generative Adversarial Network Model

In MMEngine, we use ImgDataPreprocessor to normalize the data and convert the color channels.

from mmengine.model import ImgDataPreprocessor

data_preprocessor = ImgDataPreprocessor(mean=([127.5]), std=([127.5]))

The following code implements the basic algorithm of GAN. To implement the algorithm using MMEngine, you need to inherit from the BaseModel and implement the training process in the train_step. GAN requires alternating training of the generator and discriminator, which are implemented by train_discriminator and train_generator and implement disc_loss and gen_loss to calculate the discriminator loss function and generator loss function.
More details about BaseModel, refer to Model tutorial.

import torch.nn.functional as F
from mmengine.model import BaseModel

class GAN(BaseModel):

 def __init__(self, generator, discriminator, noise_size,
 data_preprocessor):
 super().__init__(data_preprocessor=data_preprocessor)
 assert generator.noise_size == noise_size
 self.generator = generator
 self.discriminator = discriminator
 self.noise_size = noise_size

 def train_step(self, data, optim_wrapper):
 # Acquiring and preprocessing data
 inputs_dict = self.data_preprocessor(data, True)
 # Training the discriminator
 disc_optimizer_wrapper = optim_wrapper['discriminator']
 with disc_optimizer_wrapper.optim_context(self.discriminator):
 log_vars = self.train_discriminator(inputs_dict,
 disc_optimizer_wrapper)

 # Training the generator
 set_requires_grad(self.discriminator, False)
 gen_optimizer_wrapper = optim_wrapper['generator']
 with gen_optimizer_wrapper.optim_context(self.generator):
 log_vars_gen = self.train_generator(inputs_dict,
 gen_optimizer_wrapper)

 set_requires_grad(self.discriminator, True)
 log_vars.update(log_vars_gen)

 return log_vars

 def forward(self, batch_inputs, data_samples=None, mode=None):
 return self.generator(batch_inputs)

 def disc_loss(self, disc_pred_fake, disc_pred_real):
 losses_dict = dict()
 losses_dict['loss_disc_fake'] = F.binary_cross_entropy(
 disc_pred_fake, 0. * torch.ones_like(disc_pred_fake))
 losses_dict['loss_disc_real'] = F.binary_cross_entropy(
 disc_pred_real, 1. * torch.ones_like(disc_pred_real))

 loss, log_var = self.parse_losses(losses_dict)
 return loss, log_var

 def gen_loss(self, disc_pred_fake):
 losses_dict = dict()
 losses_dict['loss_gen'] = F.binary_cross_entropy(
 disc_pred_fake, 1. * torch.ones_like(disc_pred_fake))
 loss, log_var = self.parse_losses(losses_dict)
 return loss, log_var

 def train_discriminator(self, inputs, optimizer_wrapper):
 real_imgs = inputs['inputs']
 z = torch.randn(
 (real_imgs.shape[0], self.noise_size)).type_as(real_imgs)
 with torch.no_grad():
 fake_imgs = self.generator(z)

 disc_pred_fake = self.discriminator(fake_imgs)
 disc_pred_real = self.discriminator(real_imgs)

 parsed_losses, log_vars = self.disc_loss(disc_pred_fake,
 disc_pred_real)
 optimizer_wrapper.update_params(parsed_losses)
 return log_vars

 def train_generator(self, inputs, optimizer_wrapper):
 real_imgs = inputs['inputs']
 z = torch.randn(real_imgs.shape[0], self.noise_size).type_as(real_imgs)

 fake_imgs = self.generator(z)

 disc_pred_fake = self.discriminator(fake_imgs)
 parsed_loss, log_vars = self.gen_loss(disc_pred_fake)

 optimizer_wrapper.update_params(parsed_loss)
 return log_vars

The function, set_requires_grad, is used to lock the weights of the discriminator when training the generator.

def set_requires_grad(nets, requires_grad=False):
 """Set requires_grad for all the networks.

 Args:
 nets (nn.Module | list[nn.Module]): A list of networks or a single
 network.
 requires_grad (bool): Whether the networks require gradients or not.
 """
 if not isinstance(nets, list):
 nets = [nets]
 for net in nets:
 if net is not None:
 for param in net.parameters():
 param.requires_grad = requires_grad

model = GAN(generator, discriminator, 100, data_preprocessor)

Building an Optimizer

MMEngine uses OptimWrapper to wrap optimizers. For multiple optimizers, we use OptimWrapperDict to further wrap OptimWrapper.
More details about optimizers, refer to the Optimizer tutorial.

from mmengine.optim import OptimWrapper, OptimWrapperDict

opt_g = torch.optim.Adam(generator.parameters(), lr=0.0001, betas=(0.5, 0.999))
opt_g_wrapper = OptimWrapper(opt_g)

opt_d = torch.optim.Adam(
 discriminator.parameters(), lr=0.0001, betas=(0.5, 0.999))
opt_d_wrapper = OptimWrapper(opt_d)

opt_wrapper_dict = OptimWrapperDict(
 generator=opt_g_wrapper, discriminator=opt_d_wrapper)

Training with Runner

The following code demonstrates how to use Runner for model training.
More details about Runner, please refer to the Runner tutorial.

train_cfg = dict(by_epoch=True, max_epochs=220)
runner = Runner(
 model,
 work_dir='runs/gan/',
 train_dataloader=train_dataloader,
 train_cfg=train_cfg,
 optim_wrapper=opt_wrapper_dict)
runner.train()

Till now, we have completed an example of training a GAN. The following code can be used to view the results generated by the GAN we just trained.

[image: GAN generate an image]

If you want to learn more about using MMEngine to implement GAN and generative models, we highly recommend you try the generative framework MMGeneration [https://github.com/open-mmlab/mmgeneration/tree/dev-1.x] based on MMEngine.

Train a Segmentation Model

This segmentation task example will be divided into the following steps:

	Download Camvid Dataset

	Implement Camvid Dataset

	Implement a Segmentation Model

	Train with Runner

Note

You can also experience the notebook example here [https://colab.research.google.com/github/open-mmlab/mmengine/blob/main/examples/segmentation/train.ipynb].

Download Camvid Dataset

First, you should download the Camvid dataset from OpenDataLab:

https://opendatalab.com/CamVid
Configure install
pip install opendatalab
Upgraded version
pip install -U opendatalab
Login
odl login
Download this dataset
mkdir data
odl get CamVid -d data
Preprocess data in Linux. You should extract the files to data manually in
Windows
tar -xzvf data/CamVid/raw/CamVid.tar.gz.00 -C ./data

Implement the Camvid Dataset

We have implemented the CamVid class here, which inherits from VisionDataset. Within this class, we have overridden the __getitem__ and __len__ methods to ensure that each index returns a dict of images and labels. Additionally, we have implemented the color_to_class dictionary to map the mask’s color to the class index.

import os
import numpy as np
from torchvision.datasets import VisionDataset
from PIL import Image
import csv

def create_palette(csv_filepath):
 color_to_class = {}
 with open(csv_filepath, newline='') as csvfile:
 reader = csv.DictReader(csvfile)
 for idx, row in enumerate(reader):
 r, g, b = int(row['r']), int(row['g']), int(row['b'])
 color_to_class[(r, g, b)] = idx
 return color_to_class

class CamVid(VisionDataset):

 def __init__(self,
 root,
 img_folder,
 mask_folder,
 transform=None,
 target_transform=None):
 super().__init__(
 root, transform=transform, target_transform=target_transform)
 self.img_folder = img_folder
 self.mask_folder = mask_folder
 self.images = list(
 sorted(os.listdir(os.path.join(self.root, img_folder))))
 self.masks = list(
 sorted(os.listdir(os.path.join(self.root, mask_folder))))
 self.color_to_class = create_palette(
 os.path.join(self.root, 'class_dict.csv'))

 def __getitem__(self, index):
 img_path = os.path.join(self.root, self.img_folder, self.images[index])
 mask_path = os.path.join(self.root, self.mask_folder,
 self.masks[index])

 img = Image.open(img_path).convert('RGB')
 mask = Image.open(mask_path).convert('RGB') # Convert to RGB

 if self.transform is not None:
 img = self.transform(img)

 # Convert the RGB values to class indices
 mask = np.array(mask)
 mask = mask[:, :, 0] * 65536 + mask[:, :, 1] * 256 + mask[:, :, 2]
 labels = np.zeros_like(mask, dtype=np.int64)
 for color, class_index in self.color_to_class.items():
 rgb = color[0] * 65536 + color[1] * 256 + color[2]
 labels[mask == rgb] = class_index

 if self.target_transform is not None:
 labels = self.target_transform(labels)
 data_samples = dict(
 labels=labels, img_path=img_path, mask_path=mask_path)
 return img, data_samples

 def __len__(self):
 return len(self.images)

We utilize the Camvid dataset to create the train_dataloader and val_dataloader, which serve as the data loaders for training and validation in the subsequent Runner.

import torch
import torchvision.transforms as transforms

norm_cfg = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
transform = transforms.Compose(
 [transforms.ToTensor(),
 transforms.Normalize(**norm_cfg)])

target_transform = transforms.Lambda(
 lambda x: torch.tensor(np.array(x), dtype=torch.long))

train_set = CamVid(
 'data/CamVid',
 img_folder='train',
 mask_folder='train_labels',
 transform=transform,
 target_transform=target_transform)

valid_set = CamVid(
 'data/CamVid',
 img_folder='val',
 mask_folder='val_labels',
 transform=transform,
 target_transform=target_transform)

train_dataloader = dict(
 batch_size=3,
 dataset=train_set,
 sampler=dict(type='DefaultSampler', shuffle=True),
 collate_fn=dict(type='default_collate'))

val_dataloader = dict(
 batch_size=3,
 dataset=valid_set,
 sampler=dict(type='DefaultSampler', shuffle=False),
 collate_fn=dict(type='default_collate'))

Implement the Segmentation Model

The provided code defines a model class named MMDeeplabV3. This class is derived from BaseModel and incorporates the segmentation model of the DeepLabV3 architecture. It overrides the forward method to handle both input images and labels and supports computing losses and returning predictions in both training and prediction modes.

For additional information about BaseModel, you can refer to the Model tutorial.

from mmengine.model import BaseModel
from torchvision.models.segmentation import deeplabv3_resnet50
import torch.nn.functional as F

class MMDeeplabV3(BaseModel):

 def __init__(self, num_classes):
 super().__init__()
 self.deeplab = deeplabv3_resnet50(num_classes=num_classes)

 def forward(self, imgs, data_samples=None, mode='tensor'):
 x = self.deeplab(imgs)['out']
 if mode == 'loss':
 return {'loss': F.cross_entropy(x, data_samples['labels'])}
 elif mode == 'predict':
 return x, data_samples

Training with Runner

Before training with the Runner, we need to implement the IoU (Intersection over Union) metric to evaluate the model’s performance.

from mmengine.evaluator import BaseMetric

class IoU(BaseMetric):

 def process(self, data_batch, data_samples):
 preds, labels = data_samples[0], data_samples[1]['labels']
 preds = torch.argmax(preds, dim=1)
 intersect = (labels == preds).sum()
 union = (torch.logical_or(preds, labels)).sum()
 iou = (intersect / union).cpu()
 self.results.append(
 dict(batch_size=len(labels), iou=iou * len(labels)))

 def compute_metrics(self, results):
 total_iou = sum(result['iou'] for result in self.results)
 num_samples = sum(result['batch_size'] for result in self.results)
 return dict(iou=total_iou / num_samples)

Implementing a visualization hook is also important to facilitate easier comparison between predictions and labels.

from mmengine.hooks import Hook
import shutil
import cv2
import os.path as osp

class SegVisHook(Hook):

 def __init__(self, data_root, vis_num=1) -> None:
 super().__init__()
 self.vis_num = vis_num
 self.palette = create_palette(osp.join(data_root, 'class_dict.csv'))

 def after_val_iter(self,
 runner,
 batch_idx: int,
 data_batch=None,
 outputs=None) -> None:
 if batch_idx > self.vis_num:
 return
 preds, data_samples = outputs
 img_paths = data_samples['img_path']
 mask_paths = data_samples['mask_path']
 _, C, H, W = preds.shape
 preds = torch.argmax(preds, dim=1)
 for idx, (pred, img_path,
 mask_path) in enumerate(zip(preds, img_paths, mask_paths)):
 pred_mask = np.zeros((H, W, 3), dtype=np.uint8)
 runner.visualizer.set_image(pred_mask)
 for color, class_id in self.palette.items():
 runner.visualizer.draw_binary_masks(
 pred == class_id,
 colors=[color],
 alphas=1.0,
)
 # Convert RGB to BGR
 pred_mask = runner.visualizer.get_image()[..., ::-1]
 saved_dir = osp.join(runner.log_dir, 'vis_data', str(idx))
 os.makedirs(saved_dir, exist_ok=True)

 shutil.copyfile(img_path,
 osp.join(saved_dir, osp.basename(img_path)))
 shutil.copyfile(mask_path,
 osp.join(saved_dir, osp.basename(mask_path)))
 cv2.imwrite(
 osp.join(saved_dir, f'pred_{osp.basename(img_path)}'),
 pred_mask)

Finnaly, just train the model with Runner!

from torch.optim import AdamW
from mmengine.optim import AmpOptimWrapper
from mmengine.runner import Runner

num_classes = 32 # Modify to actual number of categories.

runner = Runner(
 model=MMDeeplabV3(num_classes),
 work_dir='./work_dir',
 train_dataloader=train_dataloader,
 optim_wrapper=dict(
 type=AmpOptimWrapper, optimizer=dict(type=AdamW, lr=2e-4)),
 train_cfg=dict(by_epoch=True, max_epochs=10, val_interval=10),
 val_dataloader=val_dataloader,
 val_cfg=dict(),
 val_evaluator=dict(type=IoU),
 custom_hooks=[SegVisHook('data/CamVid')],
 default_hooks=dict(checkpoint=dict(type='CheckpointHook', interval=1)),
)
runner.train()

Finnaly, you can check the training results in the folder ./work_dir/{timestamp}/vis_data.

 	image
 	prediction
 	label

 	

 Resume Training

Resume Training

Resuming training means continuing training from the state saved from some previous training, where the state includes the model’s weights, the state of the optimizer and the state of parameter scheduler.

Automatically resume training

Users can set the resume parameter of Runner to enable automatic training resumption. When resume is set to True, the Runner will try to resume from the latest checkpoint in work_dir automatically. If there is a latest checkpoint in work_dir (e.g. the training was interrupted during the last training), the training will be resumed from that checkpoint, otherwise (e.g. the last training did not have time to save the checkpoint or a new training task is started) the training will restart. Here is an example of how to enable automatic training resumption.

runner = Runner(
 model=ResNet18(),
 work_dir='./work_dir',
 train_dataloader=train_dataloader_cfg,
 optim_wrapper=dict(optimizer=dict(type='SGD', lr=0.001, momentum=0.9)),
 train_cfg=dict(by_epoch=True, max_epochs=3),
 resume=True,
)
runner.train()

Specify the checkpoint path

If you want to specify the path to resume training, you need to set load_from in addition to resume=True. Note that if only load_from is set without resume=True, then only the weights in the checkpoint will be loaded and training will be restarted, instead of continuing with the previous state.

runner = Runner(
 model=ResNet18(),
 work_dir='./work_dir',
 train_dataloader=train_dataloader_cfg,
 optim_wrapper=dict(optimizer=dict(type='SGD', lr=0.001, momentum=0.9)),
 train_cfg=dict(by_epoch=True, max_epochs=3),
 load_from='./work_dir/epoch_2.pth',
 resume=True,
)
runner.train()

 Distributed Training

Distributed Training

MMEngine supports training models with CPU, single GPU, multiple GPUs in single machine and multiple machines. When multiple GPUs are available in the environment, we can use the following command to enable multiple GPUs in single machine or multiple machines to shorten the training time of the model.

Launch Training

multiple GPUs in single machine

Assuming the current machine has 8 GPUs, you can enable multiple GPUs training with the following command:

python -m torch.distributed.launch --nproc_per_node=8 examples/distributed_training.py --launcher pytorch

If you need to specify the GPU index, you can set the CUDA_VISIBLE_DEVICES environment variable, e.g. use the 0th and 3rd GPU.

CUDA_VISIBLE_DEVICES=0,3 python -m torch.distributed.launch --nproc_per_node=2 examples/distributed_training.py --launcher pytorch

multiple machines

Assume that there are 2 machines connected with ethernet, you can simply run following commands.

On the first machine:

python -m torch.distributed.launch \
 --nnodes 8 \
 --node_rank 0 \
 --master_addr 127.0.0.1 \
 --master_port 29500 \
 --nproc_per_node=8 \
 examples/distributed_training.py --launcher pytorch

On the second machine:

python -m torch.distributed.launch \
 --nnodes 8 \
 --node_rank 1 \
 --master_addr 127.0.0.1 \
 --master_port 29500 \
 --nproc_per_node=8 \
 examples/distributed_training.py --launcher pytorch

If you are running MMEngine in a slurm cluster, simply run the following command to enable training for 2 machines and 16 GPUs.

srun -p mm_dev \
 --job-name=test \
 --gres=gpu:8 \
 --ntasks=16 \
 --ntasks-per-node=8 \
 --cpus-per-task=5 \
 --kill-on-bad-exit=1 \
 python examples/distributed_training.py --launcher="slurm"

Customize Distributed Training

When users switch from single GPU training to multiple GPUs training, no changes need to be made. Runner will use MMDistributedDataParallel by default to wrap the model, thereby supporting multiple GPUs training.

If you want to pass more parameters to MMDistributedDataParallel or use your own CustomDistributedDataParallel, you can set model_wrapper_cfg.

Pass More Parameters to MMDistributedDataParallel

For example, setting find_unused_parameters to True:

cfg = dict(
 model_wrapper_cfg=dict(
 type='MMDistributedDataParallel', find_unused_parameters=True)
)
runner = Runner(
 model=ResNet18(),
 work_dir='./work_dir',
 train_dataloader=train_dataloader_cfg,
 optim_wrapper=dict(optimizer=dict(type='SGD', lr=0.001, momentum=0.9)),
 train_cfg=dict(by_epoch=True, max_epochs=3),
 cfg=cfg,
)
runner.train()

Use a Customized CustomDistributedDataParallel

from mmengine.registry import MODEL_WRAPPERS

@MODEL_WRAPPERS.register_module()
class CustomDistributedDataParallel(DistributedDataParallel):
 pass

cfg = dict(model_wrapper_cfg=dict(type='CustomDistributedDataParallel'))
runner = Runner(
 model=ResNet18(),
 work_dir='./work_dir',
 train_dataloader=train_dataloader_cfg,
 optim_wrapper=dict(optimizer=dict(type='SGD', lr=0.001, momentum=0.9)),
 train_cfg=dict(by_epoch=True, max_epochs=3),
 cfg=cfg,
)
runner.train()

 Speed up Training

Speed up Training

Distributed Training

Warning

The usage of distributed had been moved to Distributed Training.

Mixed Precision Training

Nvidia introduced the Tensor Core unit into the Volta and Turing architectures to support FP32 and FP16 mixed precision computing. They further support BF16 in Ampere architectures. With automatic mixed precision training enabled, some operators operate at FP16/BF16 and the rest operate at FP32, which reduces training time and storage requirements without changing the model or degrading its training precision, thus supporting training with larger batch sizes, larger models, and larger input sizes.

PyTorch officially supports amp from 1.6 [https://pytorch.org/blog/accelerating-training-on-nvidia-gpus-with-pytorch-automatic-mixed-precision/]. If you are interested in the implementation of automatic mixing precision, you can refer to Mixed Precision Training [https://docs.nvidia.com/deeplearning/performance/mixed-precision-training/index.html].

MMEngine provides the wrapper AmpOptimWrapper for auto-mixing precision training, just set type='AmpOptimWrapper' in optim_wrapper to enable auto-mixing precision training, no other code changes are needed.

runner = Runner(
 model=ResNet18(),
 work_dir='./work_dir',
 train_dataloader=train_dataloader_cfg,
 optim_wrapper=dict(
 type='AmpOptimWrapper',
 # If you want to use bfloat16, uncomment the following line
 # dtype='bfloat16', # valid values: ('float16', 'bfloat16', None)
 optimizer=dict(type='SGD', lr=0.001, momentum=0.9)),
 train_cfg=dict(by_epoch=True, max_epochs=3),
)
runner.train()

Warning

Up till PyTorch 1.13, torch.bfloat16 performance on Convolution is bad unless manually set environment variable TORCH_CUDNN_V8_API_ENABLED=1. More context at PyTorch issue [https://github.com/pytorch/pytorch/issues/57707#issuecomment-1166656767]

Model Compilation

PyTorch introduced torch.compile [https://pytorch.org/docs/2.0/dynamo/get-started.html] in its 2.0 release. It compiles your model to speedup trainning & validation. This feature can be enabled since MMEngine v0.7.0, by passing to Runner an extra cfg dict with compile keyword:

runner = Runner(
 model=ResNet18(),
 ... # other arguments you want
 cfg=dict(compile=True)
)

For advanced usage, you can also change compile options as illustrated in torch.compile API Documentation [https://pytorch.org/docs/2.0/generated/torch.compile.html#torch-compile]. For example:

compile_options = dict(backend='inductor', mode='max-autotune')
runner = Runner(
 model=ResNet18(),
 ... # other arguments you want
 cfg=dict(compile=compile_options)
)

This feature is only available for PyTorch >= 2.0.0.

Warning

torch.compile is still under development by PyTorch team. Some models may fail compilation. If you encounter errors during compilation, you can refer to PyTorch Dynamo FAQ [https://pytorch.org/docs/2.0/dynamo/faq.html] for quick fix, or TorchDynamo Troubleshooting [https://pytorch.org/docs/2.0/dynamo/troubleshooting.html] to post an issue in PyTorch.

Using faster Optimizers

If Ascend devices are used, you can use the Ascend optimizers to shorten the training time of the model. The optimizers supported by Ascend devices are as follows:

	NpuFusedAdadelta

	NpuFusedAdam

	NpuFusedAdamP

	NpuFusedAdamW

	NpuFusedBertAdam

	NpuFusedLamb

	NpuFusedRMSprop

	NpuFusedRMSpropTF

	NpuFusedSGD

The usage is the same as native optimizers, and you can refer to Using Optimizers for more information.

 Save Memory on GPU

Save Memory on GPU

Memory capacity is critical in deep learning training and inference and determines whether the model can run successfully. Common memory saving approaches include:

	Enable Efficient Conv BN Eval Feature (Experimental)

We’ve recently introduced [https://github.com/open-mmlab/mmcv/pull/2807] an experimental feature in MMCV: the Efficient Conv BN Eval, based on the concepts discussed in this paper [https://arxiv.org/abs/2305.11624]. This feature has been designed with the aim of reducing memory footprint during network training without hurting performance. If your network architecture contains a series of consecutive Conv+BN blocks, and these normalization layers are maintained in eval mode during the training process (a common occurrence when training object detectors with MMDetection [https://github.com/open-mmlab/mmdetection]), this feature could reduce memory consumption by more than $20%$. To enable the Efficient Conv BN Eval feature, simply add the following command-line arguments: --cfg-options efficient_conv_bn_eval="[backbone]". When you see Enabling the "efficient_conv_bn_eval" feature for these modules ... in the output log, the feature is successfully enabled. As this is currently in an experimental phase, we are eagerly looking forward to hearing about your experience with it. Please share your usage reports, observations, and suggestions at this discussion thread [https://github.com/open-mmlab/mmengine/discussions/1252]. Your feedback is crucial for further development and for determining whether this feature should be integrated into the stable release.

	Gradient Accumulation

Gradient accumulation is the mechanism that runs at a configured number of steps accumulating the gradients instead of updating parameters, after which the network parameters are updated and the gradients are cleared. With this technique of delayed parameter update, the result is similar to those scenarios using a large batch size, while the memory of activation can be saved. However, it should be noted that if the model contains a batch normalization layer, using gradient accumulation will impact performance.

	Gradient Checkpointing

Gradient checkpointing is a time-for-space method that compresses the model by reducing the number of saved activations, however, the unstored activations must be recomputed when calculating the gradient. The corresponding functionality has been implemented in the torch.utils.checkpoint package. The implementation can be briefly concluded as that, in the forward phase, the forward function passed to the checkpoint runs in torch.no_grad mode and saves only the input and the output of the forward function. Then recalculates its intermediate activations in the backward phase.

	Large Model Training Techniques

Recent research has shown that training a large model would be helpful to improve performance, but training a model at such a scale requires huge resources, and it is hard to store the entire model in the memory of a single graphics card. Therefore large model training techniques, typically such as DeepSpeed ZeRO [https://www.deepspeed.ai/tutorials/zero/#zero-overview] and the Fully Shared Data Parallel (FSDP [https://pytorch.org/blog/introducing-pytorch-fully-sharded-data-parallel-api/]) technique introduced in FairScale are introduced. These techniques allow slicing the parameters, gradients, and optimizer states among the parallel processes, while still maintaining the simplicity of the data parallelism.

MMEngine now supports gradient accumulation and large model training FSDP techniques, and the usages are described as follows.

Gradient Accumulation

The configuration can be written in this way:

optim_wrapper_cfg = dict(
 type='OptimWrapper',
 optimizer=dict(type='SGD', lr=0.001, momentum=0.9),
 # update every four times
 accumulative_counts=4)

The full example working with Runner is as follows.

import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from mmengine.runner import Runner
from mmengine.model import BaseModel

train_dataset = [(torch.ones(1, 1), torch.ones(1, 1))] * 50
train_dataloader = DataLoader(train_dataset, batch_size=2)

class ToyModel(BaseModel):
 def __init__(self) -> None:
 super().__init__()
 self.linear = nn.Linear(1, 1)

 def forward(self, img, label, mode):
 feat = self.linear(img)
 loss1 = (feat - label).pow(2)
 loss2 = (feat - label).abs()
 return dict(loss1=loss1, loss2=loss2)

runner = Runner(
 model=ToyModel(),
 work_dir='tmp_dir',
 train_dataloader=train_dataloader,
 train_cfg=dict(by_epoch=True, max_epochs=1),
 optim_wrapper=dict(optimizer=dict(type='SGD', lr=0.01),
 accumulative_counts=4)
)
runner.train()

Gradient Checkpointing

Note

Starting from MMEngine v0.9.0, gradient checkpointing is supported. For performance comparisons, you can click on #1319 [https://github.com/open-mmlab/mmengine/pull/1319]. If you encounter any issues during usage, feel free to provide feedback in #1319 [https://github.com/open-mmlab/mmengine/pull/1319].

You can simply enable gradient checkpointing by configuring activation_checkpointing in the Runner’s cfg parameters.

Let’s take Get Started in 15 Minutes as an example:

cfg = dict(
 activation_checkpointing=['resnet.layer1', 'resnet.layer2', 'resnet.layer3']
)
runner = Runner(
 model=MMResNet50(),
 work_dir='./work_dir',
 train_dataloader=train_dataloader,
 optim_wrapper=dict(optimizer=dict(type=SGD, lr=0.001, momentum=0.9)),
 train_cfg=dict(by_epoch=True, max_epochs=2, val_interval=1),
 val_dataloader=val_dataloader,
 val_cfg=dict(),
 val_evaluator=dict(type=Accuracy),
 launcher=args.launcher,
 cfg=cfg,
)
runner.train()

Large Model Training

Warning

If you have the requirement to train large models, we recommend reading Training Big Models.

FSDP is officially supported from PyTorch 1.11. The config can be written in this way:

located in cfg file
model_wrapper_cfg=dict(type='MMFullyShardedDataParallel', cpu_offload=True)

The full example working with Runner is as follows.

import torch
import torch.nn as nn
from torch.utils.data import DataLoader
from mmengine.runner import Runner
from mmengine.model import BaseModel

train_dataset = [(torch.ones(1, 1), torch.ones(1, 1))] * 50
train_dataloader = DataLoader(train_dataset, batch_size=2)

class ToyModel(BaseModel):
 def __init__(self) -> None:
 super().__init__()
 self.linear = nn.Linear(1, 1)

 def forward(self, img, label, mode):
 feat = self.linear(img)
 loss1 = (feat - label).pow(2)
 loss2 = (feat - label).abs()
 return dict(loss1=loss1, loss2=loss2)

runner = Runner(
 model=ToyModel(),
 work_dir='tmp_dir',
 train_dataloader=train_dataloader,
 train_cfg=dict(by_epoch=True, max_epochs=1),
 optim_wrapper=dict(optimizer=dict(type='SGD', lr=0.01)),
 cfg=dict(model_wrapper_cfg=dict(type='MMFullyShardedDataParallel', cpu_offload=True))
)
runner.train()

Please be noted that FSDP works only in distributed training environments.

 Training Big Models

Training Big Models

When training large models, significant resources are required. A single GPU memory is often insufficient to meet the training needs. As a result, techniques for training large models have been developed, and one typical approach is DeepSpeed ZeRO [https://www.deepspeed.ai/tutorials/zero/#zero-overview]. DeepSpeed ZeRO supports optimizer, gradient, and parameter sharding.

To provide more flexibility in supporting large model training techniques, starting from MMEngine v0.8.0, we have introduced a new runner called FlexibleRunner and multiple abstract Strategies.

Warning

The new FlexibleRunner and Strategy are still in the experimental stage, and their interfaces may change in future versions.

The following example code is excerpted from examples/distributed_training_with_flexible_runner.py [https://github.com/open-mmlab/mmengine/blob/main/examples/distributed_training_with_flexible_runner.py].

DeepSpeed

DeepSpeed [https://github.com/microsoft/DeepSpeed/tree/master] is an open-source distributed framework based on PyTorch, developed by Microsoft. It supports training strategies such as ZeRO, 3D-Parallelism, DeepSpeed-MoE, and ZeRO-Infinity.

Starting from MMEngine v0.8.0, MMEngine supports training models using DeepSpeed.

To use DeepSpeed, you need to install it first by running the following command:

pip install deepspeed

After installing DeepSpeed, you need to configure the strategy and optim_wrapper parameters of FlexibleRunner as follows:

	strategy: Set type='DeepSpeedStrategy' and configure other parameters. See DeepSpeedStrategy for more details.

	optim_wrapper: Set type='DeepSpeedOptimWrapper' and configure other parameters. See DeepSpeedOptimWrapper for more details.

Here is an example configuration related to DeepSpeed:

from mmengine.runner._flexible_runner import FlexibleRunner

set `type='DeepSpeedStrategy'` and configure other parameters
strategy = dict(
 type='DeepSpeedStrategy',
 fp16=dict(
 enabled=True,
 fp16_master_weights_and_grads=False,
 loss_scale=0,
 loss_scale_window=500,
 hysteresis=2,
 min_loss_scale=1,
 initial_scale_power=15,
),
 inputs_to_half=[0],
 zero_optimization=dict(
 stage=3,
 allgather_partitions=True,
 reduce_scatter=True,
 allgather_bucket_size=50000000,
 reduce_bucket_size=50000000,
 overlap_comm=True,
 contiguous_gradients=True,
 cpu_offload=False),
)

set `type='DeepSpeedOptimWrapper'` and configure other parameters
optim_wrapper = dict(
 type='DeepSpeedOptimWrapper',
 optimizer=dict(type='AdamW', lr=1e-3))

construct FlexibleRunner
runner = FlexibleRunner(
 model=MMResNet50(),
 work_dir='./work_dirs',
 strategy=strategy,
 train_dataloader=train_dataloader,
 optim_wrapper=optim_wrapper,
 param_scheduler=dict(type='LinearLR'),
 train_cfg=dict(by_epoch=True, max_epochs=10, val_interval=1),
 val_dataloader=val_dataloader,
 val_cfg=dict(),
 val_evaluator=dict(type=Accuracy))

start training
runner.train()

Using two GPUs to launch distributed training:

torchrun --nproc-per-node 2 examples/distributed_training_with_flexible_runner.py --use-deepspeed

training log
07/03 13:04:17 - mmengine - INFO - Epoch(train) [1][10/196] lr: 3.3333e-04 eta: 0:13:14 time: 0.4073 data_time: 0.0335 memory: 970 loss: 6.1887
07/03 13:04:19 - mmengine - INFO - Epoch(train) [1][20/196] lr: 3.3333e-04 eta: 0:09:39 time: 0.1904 data_time: 0.0327 memory: 970 loss: 2.5746
07/03 13:04:21 - mmengine - INFO - Epoch(train) [1][30/196] lr: 3.3333e-04 eta: 0:08:32 time: 0.1993 data_time: 0.0342 memory: 970 loss: 2.4180
07/03 13:04:23 - mmengine - INFO - Epoch(train) [1][40/196] lr: 3.3333e-04 eta: 0:08:01 time: 0.2052 data_time: 0.0368 memory: 970 loss: 2.3682
07/03 13:04:25 - mmengine - INFO - Epoch(train) [1][50/196] lr: 3.3333e-04 eta: 0:07:39 time: 0.2013 data_time: 0.0356 memory: 970 loss: 2.3025
07/03 13:04:27 - mmengine - INFO - Epoch(train) [1][60/196] lr: 3.3333e-04 eta: 0:07:25 time: 0.2025 data_time: 0.0353 memory: 970 loss: 2.2078
07/03 13:04:29 - mmengine - INFO - Epoch(train) [1][70/196] lr: 3.3333e-04 eta: 0:07:13 time: 0.1999 data_time: 0.0352 memory: 970 loss: 2.2045
07/03 13:04:31 - mmengine - INFO - Epoch(train) [1][80/196] lr: 3.3333e-04 eta: 0:07:04 time: 0.2013 data_time: 0.0350 memory: 970 loss: 2.1709
07/03 13:04:33 - mmengine - INFO - Epoch(train) [1][90/196] lr: 3.3333e-04 eta: 0:06:56 time: 0.1975 data_time: 0.0341 memory: 970 loss: 2.2070
07/03 13:04:35 - mmengine - INFO - Epoch(train) [1][100/196] lr: 3.3333e-04 eta: 0:06:49 time: 0.1993 data_time: 0.0347 memory: 970 loss: 2.0891
07/03 13:04:37 - mmengine - INFO - Epoch(train) [1][110/196] lr: 3.3333e-04 eta: 0:06:44 time: 0.1995 data_time: 0.0357 memory: 970 loss: 2.0700
07/03 13:04:39 - mmengine - INFO - Epoch(train) [1][120/196] lr: 3.3333e-04 eta: 0:06:38 time: 0.1966 data_time: 0.0342 memory: 970 loss: 1.9983
07/03 13:04:41 - mmengine - INFO - Epoch(train) [1][130/196] lr: 3.3333e-04 eta: 0:06:37 time: 0.2216 data_time: 0.0341 memory: 970 loss: 1.9409
07/03 13:04:43 - mmengine - INFO - Epoch(train) [1][140/196] lr: 3.3333e-04 eta: 0:06:32 time: 0.1944 data_time: 0.0336 memory: 970 loss: 1.9800
07/03 13:04:45 - mmengine - INFO - Epoch(train) [1][150/196] lr: 3.3333e-04 eta: 0:06:27 time: 0.1946 data_time: 0.0338 memory: 970 loss: 1.9356
07/03 13:04:47 - mmengine - INFO - Epoch(train) [1][160/196] lr: 3.3333e-04 eta: 0:06:22 time: 0.1937 data_time: 0.0333 memory: 970 loss: 1.8145
07/03 13:04:49 - mmengine - INFO - Epoch(train) [1][170/196] lr: 3.3333e-04 eta: 0:06:18 time: 0.1941 data_time: 0.0335 memory: 970 loss: 1.8525
07/03 13:04:51 - mmengine - INFO - Epoch(train) [1][180/196] lr: 3.3333e-04 eta: 0:06:17 time: 0.2204 data_time: 0.0341 memory: 970 loss: 1.7637
07/03 13:04:53 - mmengine - INFO - Epoch(train) [1][190/196] lr: 3.3333e-04 eta: 0:06:14 time: 0.1998 data_time: 0.0345 memory: 970 loss: 1.7523

FullyShardedDataParallel (FSDP)

PyTorch has supported training with FullyShardedDataParallel (FSDP) since version v1.11. However, due to its evolving interface, we only support PyTorch versions 2.0.0 and above.

To use FSDP, you need to configure the 'strategy' parameter of FlexibleRunner by specifying type='FSDPStrategy' and configuring the parameters. For detailed information about it, you can refer to FSDPStrategy.

Here is an example configuration related to FSDP:

from torch.distributed.fsdp.wrap import size_based_auto_wrap_policy
size_based_auto_wrap_policy = partial(
 size_based_auto_wrap_policy, min_num_params=1e7)

set `type='FSDPStrategy'` and configure other parameters
strategy = dict(
 type='FSDPStrategy',
 model_wrapper=dict(auto_wrap_policy=size_based_auto_wrap_policy))

set `type='AmpOptimWrapper'` and configure other parameters
optim_wrapper = dict(
 type='AmpOptimWrapper', optimizer=dict(type='AdamW', lr=1e-3))

construct FlexibleRunner
runner = FlexibleRunner(
 model=MMResNet50(),
 work_dir='./work_dirs',
 strategy=strategy,
 train_dataloader=train_dataloader,
 optim_wrapper=optim_wrapper,
 param_scheduler=dict(type='LinearLR'),
 train_cfg=dict(by_epoch=True, max_epochs=10, val_interval=1),
 val_dataloader=val_dataloader,
 val_cfg=dict(),
 val_evaluator=dict(type=Accuracy))

start training
runner.train()

Using two GPUs to launch distributed training:

torchrun --nproc-per-node 2 examples/distributed_training_with_flexible_runner.py --use-fsdp

training log
07/03 13:05:37 - mmengine - INFO - Epoch(train) [1][10/196] lr: 3.3333e-04 eta: 0:08:28 time: 0.2606 data_time: 0.0330 memory: 954 loss: 6.1265
07/03 13:05:38 - mmengine - INFO - Epoch(train) [1][20/196] lr: 3.3333e-04 eta: 0:05:18 time: 0.0673 data_time: 0.0325 memory: 954 loss: 2.5584
07/03 13:05:39 - mmengine - INFO - Epoch(train) [1][30/196] lr: 3.3333e-04 eta: 0:04:13 time: 0.0666 data_time: 0.0320 memory: 954 loss: 2.4816
07/03 13:05:39 - mmengine - INFO - Epoch(train) [1][40/196] lr: 3.3333e-04 eta: 0:03:41 time: 0.0666 data_time: 0.0321 memory: 954 loss: 2.3695
07/03 13:05:40 - mmengine - INFO - Epoch(train) [1][50/196] lr: 3.3333e-04 eta: 0:03:21 time: 0.0671 data_time: 0.0324 memory: 954 loss: 2.3208
07/03 13:05:41 - mmengine - INFO - Epoch(train) [1][60/196] lr: 3.3333e-04 eta: 0:03:08 time: 0.0667 data_time: 0.0320 memory: 954 loss: 2.2431
07/03 13:05:41 - mmengine - INFO - Epoch(train) [1][70/196] lr: 3.3333e-04 eta: 0:02:58 time: 0.0667 data_time: 0.0320 memory: 954 loss: 2.1873
07/03 13:05:42 - mmengine - INFO - Epoch(train) [1][80/196] lr: 3.3333e-04 eta: 0:02:51 time: 0.0669 data_time: 0.0320 memory: 954 loss: 2.2006
07/03 13:05:43 - mmengine - INFO - Epoch(train) [1][90/196] lr: 3.3333e-04 eta: 0:02:45 time: 0.0671 data_time: 0.0324 memory: 954 loss: 2.1547
07/03 13:05:43 - mmengine - INFO - Epoch(train) [1][100/196] lr: 3.3333e-04 eta: 0:02:40 time: 0.0667 data_time: 0.0321 memory: 954 loss: 2.1361
07/03 13:05:44 - mmengine - INFO - Epoch(train) [1][110/196] lr: 3.3333e-04 eta: 0:02:36 time: 0.0668 data_time: 0.0320 memory: 954 loss: 2.0405
07/03 13:05:45 - mmengine - INFO - Epoch(train) [1][120/196] lr: 3.3333e-04 eta: 0:02:32 time: 0.0669 data_time: 0.0320 memory: 954 loss: 2.0228
07/03 13:05:45 - mmengine - INFO - Epoch(train) [1][130/196] lr: 3.3333e-04 eta: 0:02:29 time: 0.0670 data_time: 0.0324 memory: 954 loss: 2.0375
07/03 13:05:46 - mmengine - INFO - Epoch(train) [1][140/196] lr: 3.3333e-04 eta: 0:02:26 time: 0.0664 data_time: 0.0320 memory: 954 loss: 1.9926
07/03 13:05:47 - mmengine - INFO - Epoch(train) [1][150/196] lr: 3.3333e-04 eta: 0:02:24 time: 0.0668 data_time: 0.0320 memory: 954 loss: 1.9820
07/03 13:05:47 - mmengine - INFO - Epoch(train) [1][160/196] lr: 3.3333e-04 eta: 0:02:22 time: 0.0674 data_time: 0.0325 memory: 954 loss: 1.9728
07/03 13:05:48 - mmengine - INFO - Epoch(train) [1][170/196] lr: 3.3333e-04 eta: 0:02:20 time: 0.0666 data_time: 0.0320 memory: 954 loss: 1.9359
07/03 13:05:49 - mmengine - INFO - Epoch(train) [1][180/196] lr: 3.3333e-04 eta: 0:02:18 time: 0.0667 data_time: 0.0321 memory: 954 loss: 1.9488
07/03 13:05:49 - mmengine - INFO - Epoch(train) [1][190/196] lr: 3.3333e-04 eta: 0:02:16 time: 0.0671 data_time: 0.0323 memory: 954 loss: 1.9023\

ColossalAI

ColossalAI [https://colossalai.org/] is a comprehensive large-scale model training system that utilizes efficient parallelization techniques. Starting from MMEngine v0.9.0, it supports training models using optimization strategies from the ZeRO series in ColossalAI.

Install ColossalAI with a version greater than v0.3.1. This version requirement is due to a bug [https://github.com/hpcaitech/ColossalAI/issues/4393] in v0.3.1 that causes some program blocking, which has been fixed in later versions. If the highest available version of ColossalAI is still v0.3.1, it is recommended to install ColossalAI from the source code on the main branch.

Note

Note that if you encounter compilation errors like nvcc fatal: Unsupported gpu architecture 'compute_90' and your PyTorch version is higher than 2.0, you need to git clone the source code and follow the modifications in this PR [https://github.com/hpcaitech/ColossalAI/pull/4357] before proceeding with the installation.

pip install git+https://github.com/hpcaitech/ColossalAI

If the latest version of ColossalAI is higher than v0.3.1, you can directly install it using pip:

pip install colossalai

Once ColossalAI is installed, configure the strategy and optim_wrapper parameters for FlexibleRunner:

	strategy: Specify type='ColossalAIStrategy' and configure the parameters. Detailed parameter descriptions can be found in ColossalAIStrategy.

	optim_wrapper: Default to no type parameter or specify type=ColossalAIOptimWrapper. It is recommended to choose HybridAdam as the optimizer type. Other configurable types are listed in ColossalAIOptimWrapper.

Here’s the configuration related to ColossalAI:

from mmengine.runner._flexible_runner import FlexibleRunner

strategy = dict(type='ColossalAIStrategy')
optim_wrapper = dict(optimizer=dict(type='HybridAdam', lr=1e-3))

Initialize FlexibleRunner
runner = FlexibleRunner(
 model=MMResNet50(),
 work_dir='./work_dirs',
 strategy=strategy,
 train_dataloader=train_dataloader,
 optim_wrapper=optim_wrapper,
 param_scheduler=dict(type='LinearLR'),
 train_cfg=dict(by_epoch=True, max_epochs=10, val_interval=1),
 val_dataloader=val_dataloader,
 val_cfg=dict(),
 val_evaluator=dict(type=Accuracy))

Start training
runner.train()

To initiate distributed training using two GPUs:

torchrun --nproc-per-node 2 examples/distributed_training_with_flexible_runner.py --use-colossalai

Training Logs
08/18 11:56:34 - mmengine - INFO - Epoch(train) [1][10/196] lr: 3.3333e-04 eta: 0:10:31 time: 0.3238 data_time: 0.0344 memory: 597 loss: 3.8766
08/18 11:56:35 - mmengine - INFO - Epoch(train) [1][20/196] lr: 3.3333e-04 eta: 0:06:56 time: 0.1057 data_time: 0.0338 memory: 597 loss: 2.3797
08/18 11:56:36 - mmengine - INFO - Epoch(train) [1][30/196] lr: 3.3333e-04 eta: 0:05:45 time: 0.1068 data_time: 0.0342 memory: 597 loss: 2.3219
08/18 11:56:37 - mmengine - INFO - Epoch(train) [1][40/196] lr: 3.3333e-04 eta: 0:05:08 time: 0.1059 data_time: 0.0337 memory: 597 loss: 2.2641
08/18 11:56:38 - mmengine - INFO - Epoch(train) [1][50/196] lr: 3.3333e-04 eta: 0:04:45 time: 0.1062 data_time: 0.0338 memory: 597 loss: 2.2250
08/18 11:56:40 - mmengine - INFO - Epoch(train) [1][60/196] lr: 3.3333e-04 eta: 0:04:31 time: 0.1097 data_time: 0.0339 memory: 597 loss: 2.1672
08/18 11:56:41 - mmengine - INFO - Epoch(train) [1][70/196] lr: 3.3333e-04 eta: 0:04:21 time: 0.1096 data_time: 0.0340 memory: 597 loss: 2.1688
08/18 11:56:42 - mmengine - INFO - Epoch(train) [1][80/196] lr: 3.3333e-04 eta: 0:04:13 time: 0.1098 data_time: 0.0338 memory: 597 loss: 2.1781
08/18 11:56:43 - mmengine - INFO - Epoch(train) [1][90/196] lr: 3.3333e-04 eta: 0:04:06 time: 0.1097 data_time: 0.0338 memory: 597 loss: 2.0938
08/18 11:56:44 - mmengine - INFO - Epoch(train) [1][100/196] lr: 3.3333e-04 eta: 0:04:01 time: 0.1097 data_time: 0.0339 memory: 597 loss: 2.1078
08/18 11:56:45 - mmengine - INFO - Epoch(train) [1][110/196] lr: 3.3333e-04 eta: 0:04:01 time: 0.1395 data_time: 0.0340 memory: 597 loss: 2.0141
08/18 11:56:46 - mmengine - INFO - Epoch(train) [1][120/196] lr: 3.3333

 Better performance optimizers

Better performance optimizers

This document provides some third-party optimizers supported by MMEngine, which may bring faster convergence speed or higher performance.

D-Adaptation

D-Adaptation [https://github.com/facebookresearch/dadaptation] provides DAdaptAdaGrad, DAdaptAdam and DAdaptSGD optimziers。

Note

If you use the optimizer provided by D-Adaptation, you need to upgrade mmengine to 0.6.0.

	Installation

pip install dadaptation

	Usage

Take the DAdaptAdaGrad as an example.

runner = Runner(
 model=ResNet18(),
 work_dir='./work_dir',
 train_dataloader=train_dataloader_cfg,
 # To view the input parameters for DAdaptAdaGrad, you can refer to
 # https://github.com/facebookresearch/dadaptation/blob/main/dadaptation/dadapt_adagrad.py
 optim_wrapper=dict(optimizer=dict(type='DAdaptAdaGrad', lr=0.001, momentum=0.9)),
 train_cfg=dict(by_epoch=True, max_epochs=3),
)
runner.train()

Lion-Pytorch

lion-pytorch [https://github.com/lucidrains/lion-pytorch] provides the Lion optimizer。

Note

If you use the optimizer provided by Lion-Pytorch, you need to upgrade mmengine to 0.6.0.

	Installation

pip install lion-pytorch

	Usage

runner = Runner(
 model=ResNet18(),
 work_dir='./work_dir',
 train_dataloader=train_dataloader_cfg,
 # To view the input parameters for Lion, you can refer to
 # https://github.com/lucidrains/lion-pytorch/blob/main/lion_pytorch/lion_pytorch.py
 optim_wrapper=dict(optimizer=dict(type='Lion', lr=1e-4, weight_decay=1e-2)),
 train_cfg=dict(by_epoch=True, max_epochs=3),
)
runner.train()

Sophia

Sophia [https://github.com/kyegomez/Sophia] provides Sophia, SophiaG, DecoupledSophia and Sophia2 optimizers.

Note

If you use the optimizer provided by Sophia, you need to upgrade mmengine to 0.7.4.

	Installation

pip install Sophia-Optimizer

	Usage

runner = Runner(
 model=ResNet18(),
 work_dir='./work_dir',
 train_dataloader=train_dataloader_cfg,
 # To view the input parameters for SophiaG, you can refer to
 # https://github.com/kyegomez/Sophia/blob/main/Sophia/Sophia.py
 optim_wrapper=dict(optimizer=dict(type='SophiaG', lr=2e-4, betas=(0.965, 0.99), rho = 0.01, weight_decay=1e-1)),
 train_cfg=dict(by_epoch=True, max_epochs=3),
)
runner.train()

bitsandbytes

bitsandbytes [https://github.com/TimDettmers/bitsandbytes] provides AdamW8bit, Adam8bit, Adagrad8bit, PagedAdam8bit, PagedAdamW8bit, LAMB8bit, LARS8bit, RMSprop8bit, Lion8bit, PagedLion8bit and SGD8bit optimziers。

Note

If you use the optimizer provided by bitsandbytes, you need to upgrade mmengine to 0.9.0.

	Installation

pip install bitsandbytes

	Usage

Take the AdamW8bit as an example.

runner = Runner(
 model=ResNet18(),
 work_dir='./work_dir',
 train_dataloader=train_dataloader_cfg,
 # To view the input parameters for AdamW8bit, you can refer to
 # https://github.com/TimDettmers/bitsandbytes/blob/main/bitsandbytes/optim/adamw.py
 optim_wrapper=dict(optimizer=dict(type='AdamW8bit', lr=1e-4, weight_decay=1e-2)),
 train_cfg=dict(by_epoch=True, max_epochs=3),
)
runner.train()

transformers

transformers [https://github.com/huggingface/transformers] provides Adafactor optimzier。

Note

If you use the optimizer provided by transformers, you need to upgrade mmengine to 0.9.0.

	Installation

pip install transformers

	Usage

Take the Adafactor as an example.

runner = Runner(
 model=ResNet18(),
 work_dir='./work_dir',
 train_dataloader=train_dataloader_cfg,
 # To view the input parameters for Adafactor, you can refer to
 # https://github.com/huggingface/transformers/blob/v4.33.2/src/transformers/optimization.py#L492
 optim_wrapper=dict(optimizer=dict(type='Adafactor', lr=1e-5,
 weight_decay=1e-2, scale_parameter=False, relative_step=False)),
 train_cfg=dict(by_epoch=True, max_epochs=3),
)
runner.train()

 Visualize Training Logs

Visualize Training Logs

MMEngine integrates experiment management tools such as TensorBoard [https://www.tensorflow.org/tensorboard], Weights & Biases (WandB) [https://docs.wandb.ai/], MLflow [https://mlflow.org/docs/latest/index.html], ClearML [https://clear.ml/docs/latest/docs], Neptune [https://docs.neptune.ai/], DVCLive [https://dvc.org/doc/dvclive] and Aim [https://aimstack.readthedocs.io/en/latest/overview.html], making it easy to track and visualize metrics like loss and accuracy.

Below, we’ll show you how to configure an experiment management tool in just one line, based on the example from 15 minutes to get started with MMEngine.

TensorBoard

Configure the visualizer in the initialization parameters of the Runner, and set vis_backends to TensorboardVisBackend.

runner = Runner(
 model=MMResNet50(),
 work_dir='./work_dir',
 train_dataloader=train_dataloader,
 optim_wrapper=dict(optimizer=dict(type=SGD, lr=0.001, momentum=0.9)),
 train_cfg=dict(by_epoch=True, max_epochs=5, val_interval=1),
 val_dataloader=val_dataloader,
 val_cfg=dict(),
 val_evaluator=dict(type=Accuracy),
 visualizer=dict(type='Visualizer', vis_backends=[dict(type='TensorboardVisBackend')]),
)
runner.train()

WandB

Before using WandB, you need to install the wandb dependency library and log in to WandB.

pip install wandb
wandb login

Configure the visualizer in the initialization parameters of the Runner, and set vis_backends to WandbVisBackend.

runner = Runner(
 model=MMResNet50(),
 work_dir='./work_dir',
 train_dataloader=train_dataloader,
 optim_wrapper=dict(optimizer=dict(type=SGD, lr=0.001, momentum=0.9)),
 train_cfg=dict(by_epoch=True, max_epochs=5, val_interval=1),
 val_dataloader=val_dataloader,
 val_cfg=dict(),
 val_evaluator=dict(type=Accuracy),
 visualizer=dict(type='Visualizer', vis_backends=[dict(type='WandbVisBackend')]),
)
runner.train()

[image: image]

You can click on WandbVisBackend API to view the configurable parameters for WandbVisBackend. For example, the init_kwargs parameter will be passed to the wandb.init [https://docs.wandb.ai/ref/python/init] method.

runner = Runner(
 ...
 visualizer=dict(
 type='Visualizer',
 vis_backends=[
 dict(
 type='WandbVisBackend',
 init_kwargs=dict(project='toy-example')
),
],
),
 ...
)
runner.train()

MLflow (WIP)

ClearML

Before using ClearML, you need to install the clearml dependency library and refer to Connect ClearML SDK to the Server [https://clear.ml/docs/latest/docs/getting_started/ds/ds_first_steps#connect-clearml-sdk-to-the-server] for configuration.

pip install clearml
clearml-init

Configure the visualizer in the initialization parameters of the Runner, and set vis_backends to ClearMLVisBackend.

runner = Runner(
 model=MMResNet50(),
 work_dir='./work_dir',
 train_dataloader=train_dataloader,
 optim_wrapper=dict(optimizer=dict(type=SGD, lr=0.001, momentum=0.9)),
 train_cfg=dict(by_epoch=True, max_epochs=5, val_interval=1),
 val_dataloader=val_dataloader,
 val_cfg=dict(),
 val_evaluator=dict(type=Accuracy),
 visualizer=dict(type='Visualizer', vis_backends=[dict(type='ClearMLVisBackend')]),
)
runner.train()

[image: image]

Neptune

Before using Neptune, you need to install neptune dependency library and refer to Neptune.AI [https://docs.neptune.ai/] for configuration.

pip install neptune

Configure the Runner in the initialization parameters of the Runner, and set vis_backends to NeptuneVisBackend.

runner = Runner(
 model=MMResNet50(),
 work_dir='./work_dir',
 train_dataloader=train_dataloader,
 optim_wrapper=dict(optimizer=dict(type=SGD, lr=0.001, momentum=0.9)),
 train_cfg=dict(by_epoch=True, max_epochs=5, val_interval=1),
 val_dataloader=val_dataloader,
 val_cfg=dict(),
 val_evaluator=dict(type=Accuracy),
 visualizer=dict(type='Visualizer', vis_backends=[dict(type='NeptuneVisBackend')]),
)
runner.train()

[image: image]

Please note: If the project and api_token are not specified, neptune will be set to offline mode and the generated files will be saved to the local .neptune file.
It is recommended to specify the project and api_token during initialization as shown below.

runner = Runner(
 ...
 visualizer=dict(
 type='Visualizer',
 vis_backends=[
 dict(
 type='NeptuneVisBackend',
 init_kwargs=dict(project='workspace-name/project-name',
 api_token='your api token')
),
],
),
 ...
)
runner.train()

More initialization configuration parameters are available at neptune.init_run API [https://docs.neptune.ai/api/neptune/#init_run].

DVCLive

Before using DVCLive, you need to install dvclive dependency library and refer to iterative.ai [https://dvc.org/doc/start] for configuration. Common configurations are as follows:

pip install dvclive
cd ${WORK_DIR}
git init
dvc init
git commit -m "DVC init"

Configure the Runner in the initialization parameters of the Runner, and set vis_backends to DVCLiveVisBackend.

runner = Runner(
 model=MMResNet50(),
 work_dir='./work_dir_dvc',
 train_dataloader=train_dataloader,
 optim_wrapper=dict(optimizer=dict(type=SGD, lr=0.001, momentum=0.9)),
 train_cfg=dict(by_epoch=True, max_epochs=5, val_interval=1),
 val_dataloader=val_dataloader,
 val_cfg=dict(),
 val_evaluator=dict(type=Accuracy),
 visualizer=dict(type='Visualizer', vis_backends=[dict(type='DVCLiveVisBackend')]),
)
runner.train()

Note

Recommend not to set work_dir as work_dirs. Or DVC will give a warning WARNING:dvclive:Error in cache: bad DVC file name 'work_dirs\xxx.dvc' is git-ignored if you run experiments in a OpenMMLab’s repo.

Open the report.html file under work_dir_dvc, and you will see the visualization as shown in the following image.

[image: image]

You can also configure a VSCode extension of DVC [https://marketplace.visualstudio.com/items?itemName=Iterative.dvc] to visualize the training process.

More initialization configuration parameters are available at DVCLive API Reference [https://dvc.org/doc/dvclive/live].

Aim

Before using Aim, you need to install aim dependency library.

pip install aim

Configure the Runner in the initialization parameters of the Runner, and set vis_backends to AimVisBackend.

runner = Runner(
 model=MMResNet50(),
 work_dir='./work_dir',
 train_dataloader=train_dataloader,
 optim_wrapper=dict(optimizer=dict(type=SGD, lr=0.001, momentum=0.9)),
 train_cfg=dict(by_epoch=True, max_epochs=5, val_interval=1),
 val_dataloader=val_dataloader,
 val_cfg=dict(),
 val_evaluator=dict(type=Accuracy),
 visualizer=dict(type='Visualizer', vis_backends=[dict(type='AimVisBackend')]),
)
runner.train()

In the terminal, use the following command,

aim up

or in the Jupyter Notebook, use the following command,

%load_ext aim
%aim up

to launch the Aim UI as shown below.

[image: image]

Initialization configuration parameters are available at Aim SDK Reference [https://aimstack.readthedocs.io/en/latest/refs/sdk.html#module-aim.sdk.run].

 Set Random Seed

Set Random Seed

As described in PyTorch REPRODUCIBILITY [https://pytorch.org/docs/stable/notes/randomness.html], there are 2 factors affecting the reproducibility of an experiment, namely random number and nondeterministic algorithms.

MMEngine provides the functionality to set the random number and select a deterministic algorithm. Users can simply set the randomness argument of the Runner. The argument is eventually consumed in set_random_seed and it has the following three fields:

	seed (int): The random seed. If this argument is not set, a random number will be used.

	diff_rank_seed (bool): Whether to set different seeds for different processes by adding the rank (process index) to the seed.

	deterministic (bool): Whether to set deterministic options for the CUDNN backend.

Let’s take the Get Started in 15 Minutes as an example to demonstrate how to set randomness in MMEngine.

runner = Runner(
 model=MMResNet50(),
 work_dir='./work_dir',
 train_dataloader=train_dataloader,
 optim_wrapper=dict(optimizer=dict(type=SGD, lr=0.001, momentum=0.9)),
 train_cfg=dict(by_epoch=True, max_epochs=5, val_interval=1),
 val_dataloader=val_dataloader,
 val_cfg=dict(),
 val_evaluator=dict(type=Accuracy),
 # adding randomness setting
 randomness=dict(seed=0),
)
runner.train()

However, there may still be some differences between any two experiments, even with the random number set and the deterministic algorithms chosen. The core reason is that the atomic operations in CUDA are unordered and random during parallel training.

The CUDA implementation of some operators sometimes inevitably performs atomic operations such as adding, subtracting, multiplying, and dividing the same memory address multiple times in different CUDA kernels. In particular, during the backward process, the use of atomicAdd is very common. These atomic operations are unordered and random when computed. Therefore, when performing atomic operations at the same memory address multiple times, let’s say adding multiple gradients at the same address, the order in which they are performed is uncertain, and even if each number is the same, the order in which the numbers are added will be different.

The randomness of the summing order leads to another problem, that is, since the summed values are generally floating point numbers that have the problem of precision loss, there will be a slight difference in the final result.

Therefore, by setting random seeds and deterministic to True, we can make sure that the initialization weights and even the forward outputs of the model are identical for each experiment, and the loss values are also identical. However, there may be subtle differences after one back-propagation, and the final performance of the trained models will be slightly different.

 Debug Tricks

Debug Tricks

Set the Dataset’s Length

During the process of debugging code, sometimes it is necessary to train for several epochs, such as debugging the validation process or checking whether the checkpoint saving meets expectations. However, if the dataset is too large, it may take a long time to complete one epoch, in which case the length of the dataset can be set. Note that only datasets inherited from BaseDataset support this feature, and the usage of BaseDataset can be found in the BaseDataset.

Take MMPretrain as an example (Refer to the documentation [https://mmpretrain.readthedocs.io/en/latest/get_started.html] for installing MMPretrain).

Launch training

python tools/train.py configs/resnet/resnet18_8xb16_cifar10.py

Here is part of the training log, where 3125 represents the number of iterations to be performed.

02/20 14:43:11 - mmengine - INFO - Epoch(train) [1][100/3125] lr: 1.0000e-01 eta: 6:12:01 time: 0.0149 data_time: 0.0003 memory: 214 loss: 2.0611
02/20 14:43:13 - mmengine - INFO - Epoch(train) [1][200/3125] lr: 1.0000e-01 eta: 4:23:08 time: 0.0154 data_time: 0.0003 memory: 214 loss: 2.0963
02/20 14:43:14 - mmengine - INFO - Epoch(train) [1][300/3125] lr: 1.0000e-01 eta: 3:46:27 time: 0.0146 data_time: 0.0003 memory: 214 loss: 1.9858

Turn off the training and set indices as 5000 in the dataset field in configs/base/datasets/cifar10_bs16.py [https://github.com/open-mmlab/mmpretrain/blob/main/configs/_base_/datasets/cifar100_bs16.py].

train_dataloader = dict(
 batch_size=16,
 num_workers=2,
 dataset=dict(
 type=dataset_type,
 data_prefix='data/cifar10',
 test_mode=False,
 indices=5000, # set indices=5000，represent every epoch only iterator 5000 samples
 pipeline=train_pipeline),
 sampler=dict(type='DefaultSampler', shuffle=True),
)

Launch training again

python tools/train.py configs/resnet/resnet18_8xb16_cifar10.py

As we can see, the number of iterations has changed to 313. Compared to before, this can complete an epoch faster.

02/20 14:44:58 - mmengine - INFO - Epoch(train) [1][100/313] lr: 1.0000e-01 eta: 0:31:09 time: 0.0154 data_time: 0.0004 memory: 214 loss: 2.1852
02/20 14:44:59 - mmengine - INFO - Epoch(train) [1][200/313] lr: 1.0000e-01 eta: 0:23:18 time: 0.0143 data_time: 0.0002 memory: 214 loss: 2.0424
02/20 14:45:01 - mmengine - INFO - Epoch(train) [1][300/313] lr: 1.0000e-01 eta: 0:20:39 time: 0.0143 data_time: 0.0003 memory: 214 loss: 1.814

Training for a fixed number of iterations (epoch-based training)

During the process of debugging code, sometimes it is necessary to train for several epochs, such as debugging the validation process or checking whether the checkpoint saving meets expectations. However, if the dataset is too large, it may take a long time to complete one epoch. In such cases, you can configure the num_batch_per_epoch parameter of the dataloader.

Note

The num_batch_per_epoch parameter is not a native parameter of PyTorch dataloaders but an additional parameter added by MMEngine to achieve this functionality.

Let’s take the model defined in 5 minutes to get started with MMEngine as an example. By setting num_batch_per_epoch=5 in both train_dataloader and val_dataloader, you can ensure that one epoch consists of only 5 iterations.

train_dataloader = dict(
 batch_size=32,
 dataset=train_set,
 sampler=dict(type='DefaultSampler', shuffle=True),
 collate_fn=dict(type='default_collate'),
 num_batch_per_epoch=5)
val_dataloader = dict(
 batch_size=32,
 dataset=valid_set,
 sampler=dict(type='DefaultSampler', shuffle=False),
 collate_fn=dict(type='default_collate'),
 num_batch_per_epoch=5)
runner = Runner(
 model=MMResNet50(),
 work_dir='./work_dir',
 train_dataloader=train_dataloader,
 optim_wrapper=dict(optimizer=dict(type=SGD, lr=0.001, momentum=0.9)),
 train_cfg=dict(by_epoch=True, max_epochs=2, val_interval=1),
 val_dataloader=val_dataloader,
 val_cfg=dict(),
 val_evaluator=dict(type=Accuracy),
 launcher=args.launcher,
)
runner.train()

As we can see, the number of iterations has been reduced to 5. Compared to the original setting, this allows you to complete one epoch more quickly.

08/18 20:27:22 - mmengine - INFO - Epoch(train) [1][5/5] lr: 1.0000e-03 eta: 0:00:02 time: 0.4566 data_time: 0.0074 memory: 477 loss: 6.7576
08/18 20:27:22 - mmengine - INFO - Saving checkpoint at 1 epochs
08/18 20:27:22 - mmengine - WARNING - `save_param_scheduler` is True but `self.param_schedulers` is None, so skip saving parameter schedulers
08/18 20:27:23 - mmengine - INFO - Epoch(val) [1][5/5] accuracy: 7.5000 data_time: 0.0044 time: 0.0146
08/18 20:27:23 - mmengine - INFO - Exp name: 20230818_202715
08/18 20:27:23 - mmengine - INFO - Epoch(train) [2][5/5] lr: 1.0000e-03 eta: 0:00:00 time: 0.2501 data_time: 0.0077 memory: 477 loss: 5.3044
08/18 20:27:23 - mmengine - INFO - Saving checkpoint at 2 epochs
08/18 20:27:24 - mmengine - INFO - Epoch(val) [2][5/5] accuracy: 12.5000 data_time: 0.0058 time: 0.0175

Find Unused Parameters

When using multiple GPUs training, if model’s parameters are involved in forward computation but are not used in producing loss, the program may throw the following error:

RuntimeError: Expected to have finished reduction in the prior iteration before starting a new one. This error indicates that your module has parameters that were not used in producing loss. You can enable unused parameter detection by passing the keyword argument `find_unused_parameters=True` to `torch.nn.parallel.DistributedDataParallel`, and by
making sure all `forward` function outputs participate in calculating loss.

Let’s take the model defined in 5 minutes to get started with MMEngine as an example:

class MMResNet50(BaseModel):
 def __init__(self):
 super().__init__()
 self.resnet = torchvision.models.resnet50()

 def forward(self, imgs, labels, mode):
 x = self.resnet(imgs)
 if mode == 'loss':
 return {'loss': F.cross_entropy(x, labels)}
 elif mode == 'predict':
 return x, labels

Modify it to:

class MMResNet50(BaseModel):

 def __init__(self):
 super().__init__()
 self.resnet = torchvision.models.resnet50()
 self.param = nn.Parameter(torch.ones(1))

 def forward(self, imgs, labels, mode):
 x = self.resnet(imgs)
 # self.param is involved in the forward computation,
 # but y is not involved in the loss calculation
 y = self.param + x
 if mode == 'loss':
 return {'loss': F.cross_entropy(x, labels)}
 elif mode == 'predict':
 return x, labels

Start training with two GPUs:

torchrun --nproc-per-node 2 examples/distributed_training.py --launcher pytorch

The program will throw the error mentioned above.

This issue can be resolved by setting find_unused_parameters=True:

cfg = dict(
 model_wrapper_cfg=dict(
 type='MMDistributedDataParallel', find_unused_parameters=True)
)
runner = Runner(
 model=MMResNet50(),
 work_dir='./work_dir',
 train_dataloader=train_dataloader,
 optim_wrapper=dict(optimizer=dict(type=SGD, lr=0.001, momentum=0.9)),
 train_cfg=dict(by_epoch=True, max_epochs=2, val_interval=1),
 val_dataloader=val_dataloader,
 val_cfg=dict(),
 val_evaluator=dict(type=Accuracy),
 launcher=args.launcher,
 cfg=cfg,
)
runner.train()

Restart training, and you can see that the program trains normally and prints logs.

However, setting find_unused_parameters=True will slow down the program, so we want to find these parameters and analyze why they did not participate in the loss calculation.

This can be done by setting detect_anomalous_params=True to print the unused parameters.

cfg = dict(
 model_wrapper_cfg=dict(
 type='MMDistributedDataParallel',
 find_unused_parameters=True,
 detect_anomalous_params=True),
)

Restart training, and you can see that the log prints the parameters not involved in the loss calculation.

08/03 15:04:42 - mmengine - ERROR - mmengine/logging/logger.py - print_log - 323 - module.param with shape torch.Size([1]) is not in the computational graph

Once these parameters are found, we can analyze why they did not participate in the loss calculation.

Important

find_unused_parameters=True and detect_anomalous_params=True should only be set when debugging.

 Calculate the FLOPs and Parameters of Model

Calculate the FLOPs and Parameters of Model

	Define a Model

import torch.nn.functional as F
import torchvision
from mmengine.model import BaseModel

class MMResNet50(BaseModel):
 def __init__(self):
 super().__init__()
 self.resnet = torchvision.models.resnet50()

 def forward(self, imgs, labels=None, mode='tensor'):
 x = self.resnet(imgs)
 if mode == 'loss':
 return {'loss': F.cross_entropy(x, labels)}
 elif mode == 'predict':
 return x, labels
 elif mode == 'tensor':
 return x

	Calculate the FLOPs and Parameters

from mmengine.analysis import get_model_complexity_info

input_shape = (3, 224, 224)
model = MMResNet50()
analysis_results = get_model_complexity_info(model, input_shape)

	Show in table form

print(analysis_results['out_table'])

Click to expand
+------------------------+----------------------+------------+--------------+
| module | #parameters or shape | #flops | #activations |
+------------------------+----------------------+------------+--------------+
resnet	25.557M	4.145G	11.115M
conv1	9.408K	0.118G	0.803M
conv1.weight	(64, 3, 7, 7)		
bn1	0.128K	4.014M	0
bn1.weight	(64,)		
bn1.bias	(64,)		
layer1	0.216M	0.69G	4.415M
layer1.0	75.008K	0.241G	2.007M
layer1.0.conv1	4.096K	12.845M	0.201M
layer1.0.bn1	0.128K	1.004M	0
layer1.0.conv2	36.864K	0.116G	0.201M
layer1.0.bn2	0.128K	1.004M	0
layer1.0.conv3	16.384K	51.38M	0.803M
layer1.0.bn3	0.512K	4.014M	0
layer1.0.downsample	16.896K	55.394M	0.803M
layer1.1	70.4K	0.224G	1.204M
layer1.1.conv1	16.384K	51.38M	0.201M
layer1.1.bn1	0.128K	1.004M	0
layer1.1.conv2	36.864K	0.116G	0.201M
layer1.1.bn2	0.128K	1.004M	0
layer1.1.conv3	16.384K	51.38M	0.803M
layer1.1.bn3	0.512K	4.014M	0
layer1.2	70.4K	0.224G	1.204M
layer1.2.conv1	16.384K	51.38M	0.201M
layer1.2.bn1	0.128K	1.004M	0
layer1.2.conv2	36.864K	0.116G	0.201M
layer1.2.bn2	0.128K	1.004M	0
layer1.2.conv3	16.384K	51.38M	0.803M
layer1.2.bn3	0.512K	4.014M	0
layer2	1.22M	1.043G	3.111M
layer2.0	0.379M	0.379G	1.305M
layer2.0.conv1	32.768K	0.103G	0.401M
layer2.0.bn1	0.256K	2.007M	0
layer2.0.conv2	0.147M	0.116G	0.1M
layer2.0.bn2	0.256K	0.502M	0
layer2.0.conv3	65.536K	51.38M	0.401M
layer2.0.bn3	1.024K	2.007M	0
layer2.0.downsample	0.132M	0.105G	0.401M
layer2.1	0.28M	0.221G	0.602M
layer2.1.conv1	65.536K	51.38M	0.1M
layer2.1.bn1	0.256K	0.502M	0
layer2.1.conv2	0.147M	0.116G	0.1M
layer2.1.bn2	0.256K	0.502M	0
layer2.1.conv3	65.536K	51.38M	0.401M
layer2.1.bn3	1.024K	2.007M	0
layer2.2	0.28M	0.221G	0.602M
layer2.2.conv1	65.536K	51.38M	0.1M
layer2.2.bn1	0.256K	0.502M	0
layer2.2.conv2	0.147M	0.116G	0.1M
layer2.2.bn2	0.256K	0.502M	0
layer2.2.conv3	65.536K	51.38M	0.401M
layer2.2.bn3	1.024K	2.007M	0
layer2.3	0.28M	0.221G	0.602M
layer2.3.conv1	65.536K	51.38M	0.1M
layer2.3.bn1	0.256K	0.502M	0
layer2.3.conv2	0.147M	0.116G	0.1M
layer2.3.bn2	0.256K	0.502M	0
layer2.3.conv3	65.536K	51.38M	0.401M
layer2.3.bn3	1.024K	2.007M	0
layer3	7.098M	1.475G	2.158M
layer3.0	1.512M	0.376G	0.652M
layer3.0.conv1	0.131M	0.103G	0.201M
layer3.0.bn1	0.512K	1.004M	0
layer3.0.conv2	0.59M	0.116G	50.176K
layer3.0.bn2	0.512K	0.251M	0
layer3.0.conv3	0.262M	51.38M	0.201M
layer3.0.bn3	2.048K	1.004M	0
layer3.0.downsample	0.526M	0.104G	0.201M
layer3.1	1.117M	0.22G	0.301M
layer3.1.conv1	0.262M	51.38M	50.176K
layer3.1.bn1	0.512K	0.251M	0
layer3.1.conv2	0.59M	0.116G	50.176K
layer3.1.bn2	0.512K	0.251M	0
layer3.1.conv3	0.262M	51.38M	0.201M
layer3.1.bn3	2.048K	1.004M	0
layer3.2	1.117M	0.22G	0.301M
layer3.2.conv1	0.262M	51.38M	50.176K
layer3.2.bn1	0.512K	0.251M	0
layer3.2.conv2	0.59M	0.116G	50.176K
layer3.2.bn2	0.512K	0.251M	0
layer3.2.conv3	0.262M	51.38M	0.201M
layer3.2.bn3	2.048K	1.004M	0
layer3.3	1.117M	0.22G	0.301M
layer3.3.conv1	0.262M	51.38M	50.176K
layer3.3.bn1	0.512K	0.251M	0
layer3.3.conv2	0.59M	0.116G	50.176K
layer3.3.bn2	0.512K	0.251M	0
layer3.3.conv3	0.262M	51.38M	0.201M
layer3.3.bn3	2.048K	1.004M	0
layer3.4	1.117M	0.22G	0.301M
layer3.4.conv1	0.262M	51.38M	50.176K
layer3.4.bn1	0.512K	0.251M	0
layer3.4.conv2	0.59M	0.116G	50.176K
layer3.4.bn2	0.512K	0.251M	0
layer3.4.conv3	0.262M	51.38M	0.201M
layer3.4.bn3	2.048K	1.004M	0
layer3.5	1.117M	0.22G	0.301M
layer3.5.conv1	0.262M	51.38M	50.176K
layer3.5.bn1	0.512K	0.251M	0
layer3.5.conv2	0.59M	0.116G	50.176K
layer3.5.bn2	0.512K	0.251M	0
layer3.5.conv3	0.262M	51.38M	0.201M
layer3.5.bn3	2.048K	1.004M	0
layer4	14.965M	0.812G	0.627M
layer4.0	6.04M	0.374G	0.326M
layer4.0.conv1	0.524M	0.103G	0.1M
layer4.0.bn1	1.024K	0.502M	0
layer4.0.conv2	2.359M	0.116G	25.088K
layer4.0.bn2	1.024K	0.125M	0
layer4.0.conv3	1.049M	51.38M	0.1M
layer4.0.bn3	4.096K	0.502M	0
layer4.0.downsample	2.101M	0.103G	0.1M
layer4.1	4.463M	0.219G	0.151M
layer4.1.conv1	1.049M	51.38M	25.088K
layer4.1.bn1	1.024K	0.125M	0
layer4.1.conv2	2.359M	0.116G	25.088K
layer4.1.bn2	1.024K	0.125M	0
layer4.1.conv3	1.049M	51.38M	0.1M
layer4.1.bn3	4.096K	0.502M	0
layer4.2	4.463M	0.219G	0.151M
layer4.2.conv1	1.049M	51.38M	25.088K
layer4.2.bn1	1.024K	0.125M	0
layer4.2.conv2	2.359M	0.116G	25.088K
layer4.2.bn2	1.024K	0.125M	0
layer4.2.conv3	1.049M	51.38M	0.1M
layer4.2.bn3	4.096K	0.502M	0
fc	2.049M	2.048M	1K
fc.weight	(1000, 2048)		
fc.bias	(1000,)		
avgpool		0.1M	0
+------------------------+----------------------+------------+--------------+

	Show in model structure

print(analysis_results['out_arch'])

Click to expand
MMResNet50(
#params: 25.56M, #flops: 4.14G, #acts: 11.11M
(data_preprocessor): BaseDataPreprocessor(#params: 0, #flops: N/A, #acts: N/A)
(resnet): ResNet(
 #params: 25.56M, #flops: 4.14G, #acts: 11.11M
 (conv1): Conv2d(
 3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3), bias=False
 #params: 9.41K, #flops: 0.12G, #acts: 0.8M
)
 (bn1): BatchNorm2d(
 64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
 #params: 0.13K, #flops: 4.01M, #acts: 0
)
 (relu): ReLU(inplace=True)
 (maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)
 (layer1): Sequential(
 #params: 0.22M, #flops: 0.69G, #acts: 4.42M
 (0): Bottleneck(
 #params: 75.01K, #flops: 0.24G, #acts: 2.01M
 (conv1): Conv2d(
 64, 64, kernel_size=(1, 1), stride=(1, 1), bias=False
 #params: 4.1K, #flops: 12.85M, #acts: 0.2M
)
 (bn1): BatchNorm2d(
 64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
 #params: 0.13K, #flops: 1M, #acts: 0
)
 (conv2): Conv2d(
 64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
 #params: 36.86K, #flops: 0.12G, #acts: 0.2M
)
 (bn2): BatchNorm2d(
 64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
 #params: 0.13K, #flops: 1M, #acts: 0
)
 (conv3): Conv2d(
 64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
 #params: 16.38K, #flops: 51.38M, #acts: 0.8M
)
 (bn3): BatchNorm2d(
 256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
 #params: 0.51K, #flops: 4.01M, #acts: 0
)
 (relu): ReLU(inplace=True)
 (downsample): Sequential(
 #params: 16.9K, #flops: 55.39M, #acts: 0.8M
 (0): Conv2d(
 64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
 #params: 16.38K, #flops: 51.38M, #acts: 0.8M
)
 (1): BatchNorm2d(
 256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
 #params: 0.51K, #flops: 4.01M, #acts: 0
)
)
)
 (1): Bottleneck(
 #params: 70.4K, #flops: 0.22G, #acts: 1.2M
 (conv1): Conv2d(
 256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False
 #params: 16.38K, #flops: 51.38M, #acts: 0.2M
)
 (bn1): BatchNorm2d(
 64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
 #params: 0.13K, #flops: 1M, #acts: 0
)
 (conv2): Conv2d(
 64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
 #params: 36.86K, #flops: 0.12G, #acts: 0.2M
)
 (bn2): BatchNorm2d(
 64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
 #params: 0.13K, #flops: 1M, #acts: 0
)
 (conv3): Conv2d(
 64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
 #params: 16.38K, #flops: 51.38M, #acts: 0.8M
)
 (bn3): BatchNorm2d(
 256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
 #params: 0.51K, #flops: 4.01M, #acts: 0
)
 (relu): ReLU(inplace=True)
)
 (2): Bottleneck(
 #params: 70.4K, #flops: 0.22G, #acts: 1.2M
 (conv1): Conv2d(
 256, 64, kernel_size=(1, 1), stride=(1, 1), bias=False
 #params: 16.38K, #flops: 51.38M, #acts: 0.2M
)
 (bn1): BatchNorm2d(
 64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
 #params: 0.13K, #flops: 1M, #acts: 0
)
 (conv2): Conv2d(
 64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
 #params: 36.86K, #flops: 0.12G, #acts: 0.2M
)
 (bn2): BatchNorm2d(
 64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
 #params: 0.13K, #flops: 1M, #acts: 0
)
 (conv3): Conv2d(
 64, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
 #params: 16.38K, #flops: 51.38M, #acts: 0.8M
)
 (bn3): BatchNorm2d(
 256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
 #params: 0.51K, #flops: 4.01M, #acts: 0
)
 (relu): ReLU(inplace=True)
)
)
 (layer2): Sequential(
 #params: 1.22M, #flops: 1.04G, #acts: 3.11M
 (0): Bottleneck(
 #params: 0.38M, #flops: 0.38G, #acts: 1.3M
 (conv1): Conv2d(
 256, 128, kernel_size=(1, 1), stride=(1, 1), bias=False
 #params: 32.77K, #flops: 0.1G, #acts: 0.4M
)
 (bn1): BatchNorm2d(
 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
 #params: 0.26K, #flops: 2.01M, #acts: 0
)
 (conv2): Conv2d(
 128, 128, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False
 #params: 0.15M, #flops: 0.12G, #acts: 0.1M
)
 (bn2): BatchNorm2d(
 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
 #params: 0.26K, #flops: 0.5M, #acts: 0
)
 (conv3): Conv2d(
 128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
 #params: 65.54K, #flops: 51.38M, #acts: 0.4M
)
 (bn3): BatchNorm2d(
 512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
 #params: 1.02K, #flops: 2.01M, #acts: 0
)
 (relu): ReLU(inplace=True)
 (downsample): Sequential(
 #params: 0.13M, #flops: 0.1G, #acts: 0.4M
 (0): Conv2d(
 256, 512, kernel_size=(1, 1), stride=(2, 2), bias=False
 #params: 0.13M, #flops: 0.1G, #acts: 0.4M
)
 (1): BatchNorm2d(
 512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
 #params: 1.02K, #flops: 2.01M, #acts: 0
)
)
)
 (1): Bottleneck(
 #params: 0.28M, #flops: 0.22G, #acts: 0.6M
 (conv1): Conv2d(
 512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False
 #params: 65.54K, #flops: 51.38M, #acts: 0.1M
)
 (bn1): BatchNorm2d(
 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
 #params: 0.26K, #flops: 0.5M, #acts: 0
)
 (conv2): Conv2d(
 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
 #params: 0.15M, #flops: 0.12G, #acts: 0.1M
)
 (bn2): BatchNorm2d(
 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
 #params: 0.26K, #flops: 0.5M, #acts: 0
)
 (conv3): Conv2d(
 128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
 #params: 65.54K, #flops: 51.38M, #acts: 0.4M
)
 (bn3): BatchNorm2d(
 512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
 #params: 1.02K, #flops: 2.01M, #acts: 0
)
 (relu): ReLU(inplace=True)
)
 (2): Bottleneck(
 #params: 0.28M, #flops: 0.22G, #acts: 0.6M
 (conv1): Conv2d(
 512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False
 #params: 65.54K, #flops: 51.38M, #acts: 0.1M
)
 (bn1): BatchNorm2d(
 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
 #params: 0.26K, #flops: 0.5M, #acts: 0
)
 (conv2): Conv2d(
 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
 #params: 0.15M, #flops: 0.12G, #acts: 0.1M
)
 (bn2): BatchNorm2d(
 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
 #params: 0.26K, #flops: 0.5M, #acts: 0
)
 (conv3): Conv2d(
 128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
 #params: 65.54K, #flops: 51.38M, #acts: 0.4M
)
 (bn3): BatchNorm2d(
 512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
 #params: 1.02K, #flops: 2.01M, #acts: 0
)
 (relu): ReLU(inplace=True)
)
 (3): Bottleneck(
 #params: 0.28M, #flops: 0.22G, #acts: 0.6M
 (conv1): Conv2d(
 512, 128, kernel_size=(1, 1), stride=(1, 1), bias=False
 #params: 65.54K, #flops: 51.38M, #acts: 0.1M
)
 (bn1): BatchNorm2d(
 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
 #params: 0.26K, #flops: 0.5M, #acts: 0
)
 (conv2): Conv2d(
 128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
 #params: 0.15M, #flops: 0.12G, #acts: 0.1M
)
 (bn2): BatchNorm2d(
 128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
 #params: 0.26K, #flops: 0.5M, #acts: 0
)
 (conv3): Conv2d(
 128, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
 #params: 65.54K, #flops: 51.38M, #acts: 0.4M
)
 (bn3): BatchNorm2d(
 512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
 #params: 1.02K, #flops: 2.01M, #acts: 0
)
 (relu): ReLU(inplace=True)
)
)
 (layer3): Sequential(
 #params: 7.1M, #flops: 1.48G, #acts: 2.16M
 (0): Bottleneck(
 #params: 1.51M, #flops: 0.38G, #acts: 0.65M
 (conv1): Conv2d(
 512, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
 #params: 0.13M, #flops: 0.1G, #acts: 0.2M
)
 (bn1): BatchNorm2d(
 256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
 #params: 0.51K, #flops: 1M, #acts: 0
)
 (conv2): Conv2d(
 256, 256, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False
 #params: 0.59M, #flops: 0.12G, #acts: 50.18K
)
 (bn2): BatchNorm2d(
 256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
 #params: 0.51K, #flops: 0.25M, #acts: 0
)
 (conv3): Conv2d(
 256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
 #params: 0.26M, #flops: 51.38M, #acts: 0.2M
)
 (bn3): BatchNorm2d(
 1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
 #params: 2.05K, #flops: 1M, #acts: 0
)
 (relu): ReLU(inplace=True)
 (downsample): Sequential(
 #params: 0.53M, #flops: 0.1G, #acts: 0.2M
 (0): Conv2d(
 512, 1024, kernel_size=(1, 1), stride=(2, 2), bias=False
 #params: 0.52M, #flops: 0.1G, #acts: 0.2M
)
 (1): BatchNorm2d(
 1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
 #params: 2.05K, #flops: 1M, #acts: 0
)
)
)
 (1): Bottleneck(
 #params: 1.12M, #flops: 0.22G, #acts: 0.3M
 (conv1): Conv2d(
 1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
 #params: 0.26M, #flops: 51.38M, #acts: 50.18K
)
 (bn1): BatchNorm2d(
 256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
 #params: 0.51K, #flops: 0.25M, #acts: 0
)
 (conv2): Conv2d(
 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
 #params: 0.59M, #flops: 0.12G, #acts: 50.18K
)
 (bn2): BatchNorm2d(
 256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
 #params: 0.51K, #flops: 0.25M, #acts: 0
)
 (conv3): Conv2d(
 256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
 #params: 0.26M, #flops: 51.38M, #acts: 0.2M
)
 (bn3): BatchNorm2d(
 1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
 #params: 2.05K, #flops: 1M, #acts: 0
)
 (relu): ReLU(inplace=True)
)
 (2): Bottleneck(
 #params: 1.12M, #flops: 0.22G, #acts: 0.3M
 (conv1): Conv2d(
 1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
 #params: 0.26M, #flops: 51.38M, #acts: 50.18K
)
 (bn1): BatchNorm2d(
 256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
 #params: 0.51K, #flops: 0.25M, #acts: 0
)
 (conv2): Conv2d(
 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
 #params: 0.59M, #flops: 0.12G, #acts: 50.18K
)
 (bn2): BatchNorm2d(
 256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
 #params: 0.51K, #flops: 0.25M, #acts: 0
)
 (conv3): Conv2d(
 256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
 #params: 0.26M, #flops: 51.38M, #acts: 0.2M
)
 (bn3): BatchNorm2d(
 1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
 #params: 2.05K, #flops: 1M, #acts: 0
)
 (relu): ReLU(inplace=True)
)
 (3): Bottleneck(
 #params: 1.12M, #flops: 0.22G, #acts: 0.3M
 (conv1): Conv2d(
 1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
 #params: 0.26M, #flops: 51.38M, #acts: 50.18K
)
 (bn1): BatchNorm2d(
 256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
 #params: 0.51K, #flops: 0.25M, #acts: 0
)
 (conv2): Conv2d(
 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
 #params: 0.59M, #flops: 0.12G, #acts: 50.18K
)
 (bn2): BatchNorm2d(
 256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
 #params: 0.51K, #flops: 0.25M, #acts: 0
)
 (conv3): Conv2d(
 256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
 #params: 0.26M, #flops: 51.38M, #acts: 0.2M
)
 (bn3): BatchNorm2d(
 1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
 #params: 2.05K, #flops: 1M, #acts: 0
)
 (relu): ReLU(inplace=True)
)
 (4): Bottleneck(
 #params: 1.12M, #flops: 0.22G, #acts: 0.3M
 (conv1): Conv2d(
 1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
 #params: 0.26M, #flops: 51.38M, #acts: 50.18K
)
 (bn1): BatchNorm2d(
 256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
 #params: 0.51K, #flops: 0.25M, #acts: 0
)
 (conv2): Conv2d(
 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
 #params: 0.59M, #flops: 0.12G, #acts: 50.18K
)
 (bn2): BatchNorm2d(
 256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
 #params: 0.51K, #flops: 0.25M, #acts: 0
)
 (conv3): Conv2d(
 256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
 #params: 0.26M, #flops: 51.38M, #acts: 0.2M
)
 (bn3): BatchNorm2d(
 1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
 #params: 2.05K, #flops: 1M, #acts: 0
)
 (relu): ReLU(inplace=True)
)
 (5): Bottleneck(
 #params: 1.12M, #flops: 0.22G, #acts: 0.3M
 (conv1): Conv2d(
 1024, 256, kernel_size=(1, 1), stride=(1, 1), bias=False
 #params: 0.26M, #flops: 51.38M, #acts: 50.18K
)
 (bn1): BatchNorm2d(
 256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
 #params: 0.51K, #flops: 0.25M, #acts: 0
)
 (conv2): Conv2d(
 256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
 #params: 0.59M, #flops: 0.12G, #acts: 50.18K
)
 (bn2): BatchNorm2d(
 256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
 #params: 0.51K, #flops: 0.25M, #acts: 0
)
 (conv3): Conv2d(
 256, 1024, kernel_size=(1, 1), stride=(1, 1), bias=False
 #params: 0.26M, #flops: 51.38M, #acts: 0.2M
)
 (bn3): BatchNorm2d(
 1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
 #params: 2.05K, #flops: 1M, #acts: 0
)
 (relu): ReLU(inplace=True)
)
)
 (layer4): Sequential(
 #params: 14.96M, #flops: 0.81G, #acts: 0.63M
 (0): Bottleneck(
 #params: 6.04M, #flops: 0.37G, #acts: 0.33M
 (conv1): Conv2d(
 1024, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
 #params: 0.52M, #flops: 0.1G, #acts: 0.1M
)
 (bn1): BatchNorm2d(
 512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
 #params: 1.02K, #flops: 0.5M, #acts: 0
)
 (conv2): Conv2d(
 512, 512, kernel_size=(3, 3), stride=(2, 2), padding=(1, 1), bias=False
 #params: 2.36M, #flops: 0.12G, #acts: 25.09K
)
 (bn2): BatchNorm2d(
 512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
 #params: 1.02K, #flops: 0.13M, #acts: 0
)
 (conv3): Conv2d(
 512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
 #params: 1.05M, #flops: 51.38M, #acts: 0.1M
)
 (bn3): BatchNorm2d(
 2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
 #params: 4.1K, #flops: 0.5M, #acts: 0
)
 (relu): ReLU(inplace=True)
 (downsample): Sequential(
 #params: 2.1M, #flops: 0.1G, #acts: 0.1M
 (0): Conv2d(
 1024, 2048, kernel_size=(1, 1), stride=(2, 2), bias=False
 #params: 2.1M, #flops: 0.1G, #acts: 0.1M
)
 (1): BatchNorm2d(
 2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
 #params: 4.1K, #flops: 0.5M, #acts: 0
)
)
)
 (1): Bottleneck(
 #params: 4.46M, #flops: 0.22G, #acts: 0.15M
 (conv1): Conv2d(
 2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
 #params: 1.05M, #flops: 51.38M, #acts: 25.09K
)
 (bn1): BatchNorm2d(
 512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
 #params: 1.02K, #flops: 0.13M, #acts: 0
)
 (conv2): Conv2d(
 512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
 #params: 2.36M, #flops: 0.12G, #acts: 25.09K
)
 (bn2): BatchNorm2d(
 512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
 #params: 1.02K, #flops: 0.13M, #acts: 0
)
 (conv3): Conv2d(
 512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
 #params: 1.05M, #flops: 51.38M, #acts: 0.1M
)
 (bn3): BatchNorm2d(
 2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
 #params: 4.1K, #flops: 0.5M, #acts: 0
)
 (relu): ReLU(inplace=True)
)
 (2): Bottleneck(
 #params: 4.46M, #flops: 0.22G, #acts: 0.15M
 (conv1): Conv2d(
 2048, 512, kernel_size=(1, 1), stride=(1, 1), bias=False
 #params: 1.05M, #flops: 51.38M, #acts: 25.09K
)
 (bn1): BatchNorm2d(
 512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
 #params: 1.02K, #flops: 0.13M, #acts: 0
)
 (conv2): Conv2d(
 512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False
 #params: 2.36M, #flops: 0.12G, #acts: 25.09K
)
 (bn2): BatchNorm2d(
 512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
 #params: 1.02K, #flops: 0.13M, #acts: 0
)
 (conv3): Conv2d(
 512, 2048, kernel_size=(1, 1), stride=(1, 1), bias=False
 #params: 1.05M, #flops: 51.38M, #acts: 0.1M
)
 (bn3): BatchNorm2d(
 2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True
 #params: 4.1K, #flops: 0.5M, #acts: 0
)
 (relu): ReLU(inplace=True)
)
)
 (avgpool): AdaptiveAvgPool2d(
 output_size=(1, 1)
 #params: 0, #flops: 0.1M, #acts: 0
)
 (fc): Linear(
 in_features=2048, out_features=1000, bias=True
 #params: 2.05M, #flops: 2.05M, #acts: 1K
)
)
)

	Show FLOPs as a string

print('Model Flops:{}'.format(analysis_results['flops_str']))
Model Flops:4.145G

	Show Parameters as a string

print('Model Parameters:{}'.format(analysis_results['params_str']))
Model Parameters:25.557M

For the definition of FLOPs and Parameters of model and more usage, please refer to Model Complexity Analysis

 Setting the Frequency of Logging, Checkpoint Saving, and Validation

Setting the Frequency of Logging, Checkpoint Saving, and Validation

MMEngine supports two training modes, EpochBased based on epochs and IterBased based on the number of iterations. Both of these modes are used in downstream algorithm libraries such as MMDetection [https://github.com/open-mmlab/mmdetection], which uses the EpochBased mode by default, and MMSegmentation [https://github.com/open-mmlab/mmsegmentation], which uses the IterBased mode by default.

In different training modes, the semantics of the interval in MMEngine will be different. In EpochBased mode, the interval is in terms of epochs, while in IterBased mode, the interval is in terms of iterations.

Setting the Interval for Training and Validation

To customize the interval for training and validation, set the val_interval parameter in the initialization parameter train_cfg of Runner.

	EpochBased

In EpochBased mode, the default value of val_interval is 1, which means to validate once after training an epoch.

runner = Runner(
 model=MMResNet50(),
 work_dir='./work_dir',
 train_dataloader=train_dataloader,
 optim_wrapper=dict(optimizer=dict(type=SGD, lr=0.001, momentum=0.9)),
 train_cfg=dict(by_epoch=True, max_epochs=5, val_interval=1),
 val_dataloader=val_dataloader,
 val_cfg=dict(),
 val_evaluator=dict(type=Accuracy),
)
runner.train()

	IterBased

In IterBased mode, the default value of val_interval is 1000, which means to validate once after training 1000 iterations.

runner = Runner(
 model=MMResNet50(),
 work_dir='./work_dir',
 train_dataloader=train_dataloader,
 optim_wrapper=dict(optimizer=dict(type=SGD, lr=0.001, momentum=0.9)),
 train_cfg=dict(by_epoch=False, max_iters=10000, val_interval=2000),
 val_dataloader=val_dataloader,
 val_cfg=dict(),
 val_evaluator=dict(type=Accuracy),
)
runner.train()

Setting the Interval for Saving Checkpoints

To customize the interval for saving checkpoints, set the interval parameter of CheckpointHook.

	EpochBased

In EpochBased mode, the default value of interval is 1, which means to save checkpoints once after training for one epoch.

set the interval to 2, which means to save checkpoints every 2 epochs
default_hooks = dict(checkpoint=dict(type='CheckpointHook', interval=2))
runner = Runner(
 model=MMResNet50(),
 work_dir='./work_dir',
 train_dataloader=train_dataloader,
 optim_wrapper=dict(optimizer=dict(type=SGD, lr=0.001, momentum=0.9)),
 train_cfg=dict(by_epoch=True, max_epochs=5, val_interval=1),
 val_dataloader=val_dataloader,
 val_cfg=dict(),
 val_evaluator=dict(type=Accuracy),
 default_hooks=default_hooks,
)
runner.train()

	IterBased

By default, checkpoints are saved in terms of epochs. If you want to save checkpoints in terms of iterations, you need to set by_epoch=False.

set by_epoch=False and interval=500, which means to save checkpoints every 500 iterations
default_hooks = dict(checkpoint=dict(type='CheckpointHook', by_epoch=False, interval=500))
runner = Runner(
 model=MMResNet50(),
 work_dir='./work_dir',
 train_dataloader=train_dataloader,
 optim_wrapper=dict(optimizer=dict(type=SGD, lr=0.001, momentum=0.9)),
 train_cfg=dict(by_epoch=False, max_iters=10000, val_interval=1000),
 val_dataloader=val_dataloader,
 val_cfg=dict(),
 val_evaluator=dict(type=Accuracy),
 default_hooks=default_hooks,
)
runner.train()

For more information on how to use CheckpointHook, please refer to the CheckpointHook tutorial.

Setting the Interval for Printing Logs

By default, logs are printed to the terminal once every 10 iterations. You can set the interval using the interval parameter of the LoggerHook.

print logs every 20 iterations
default_hooks = dict(logger=dict(type='LoggerHook', interval=20))
runner = Runner(
 model=MMResNet50(),
 work_dir='./work_dir',
 train_dataloader=train_dataloader,
 optim_wrapper=dict(optimizer=dict(type=SGD, lr=0.001, momentum=0.9)),
 train_cfg=dict(by_epoch=True, max_epochs=5, val_interval=1),
 val_dataloader=val_dataloader,
 val_cfg=dict(),
 val_evaluator=dict(type=Accuracy),
 default_hooks=default_hooks,
)
runner.train()

For more information on how to use LoggerHook, please refer to the LoggerHook tutorial.

 EpochBasedTraining to IterBasedTraining

EpochBasedTraining to IterBasedTraining

Epoch-based training and iteration-based training are two commonly used training way in MMEngine. For example, downstream repositories like MMDetection [https://github.com/open-mmlab/mmdetection] choose to train the model by epoch and MMSegmentation [https://github.com/open-mmlab/mmsegmentation] choose to train the model by iteration.

Many modules in MMEngine default to training models by epoch, such as ParamScheduler, LoggerHook, CheckPointHook, etc. Therefore, you need to adjust the configuration of these modules if you want to train by iteration. For example, a commonly used epoch based configuration is as follows:

param_scheduler = dict(
 type='MultiStepLR',
 milestones=[6, 8]
 by_epoch=True # by_epoch is True by default
)

default_hooks = dict(
 logger=dict(type='LoggerHook', log_metric_by_epoch=True), # log_metric_by_epoch is True by default
 checkpoint=dict(type='CheckpointHook', interval=2, by_epoch=True), # by_epoch is True by default
)

train_cfg = dict(
 by_epoch=True, # set by_epoch=True or type='EpochBasedTrainLoop'
 max_epochs=10,
 val_interval=2
)

log_processor = dict(
 by_epoch=True
) # This is the default configuration, and just set it here for comparison.

runner = Runner(
 model=ResNet18(),
 work_dir='./work_dir',
 # Assuming train_dataloader is configured with an epoch-based sampler
 train_dataloader=train_dataloader_cfg,
 optim_wrapper=dict(optimizer=dict(type='SGD', lr=0.001, momentum=0.9)),
 param_scheduler=param_scheduler
 default_hooks=default_hooks,
 log_processor=log_processor,
 train_cfg=train_cfg,
 resume=True,
)

There are four steps to convert the above configuration to iteration based training:

	Set by_epoch in train_cfg to False, and set max_iters to the total number of training iterations and val_interval to the interval between validation iterations.

train_cfg = dict(
 by_epoch=False,
 max_iters=10000,
 val_interval=2000
)

	Set log_metric_by_epoch to False in logger and by_epoch to False in checkpoint.

default_hooks = dict(
 logger=dict(type='LoggerHook', log_metric_by_epoch=False),
 checkpoint=dict(type='CheckpointHook', by_epoch=False, interval=2000),
)

	Set by_epoch in param_scheduler to False and convert any epoch-related parameters to iteration.

param_scheduler = dict(
 type='MultiStepLR',
 milestones=[6000, 8000],
 by_epoch=False,
)

Alternatively, if you can ensure that the total number of iterations for IterBasedTraining and EpochBasedTraining is the same, simply set convert_to_iter_based to True.

param_scheduler = dict(
 type='MultiStepLR',
 milestones=[6, 8]
 convert_to_iter_based=True
)

	Set by_epoch in log_processor to False.

log_processor = dict(
 by_epoch=False
)

Take training CIFAR10 as an example:

 	Step
 	Training by epoch
 	Training by iteration

 	Build model
 	
import torch.nn.functional as F
import torchvision
from mmengine.model import BaseModel

class MMResNet50(BaseModel):
 def __init__(self):
 super().__init__()
 self.resnet = torchvision.models.resnet50()

 def forward(self, imgs, labels, mode):
 x = self.resnet(imgs)
 if mode == 'loss':
 return {'loss': F.cross_entropy(x, labels)}
 elif mode == 'predict':
 return x, labels

 Runner

Runner

Welcome to the tutorial of runner, the core of MMEngine’s user interface!

The runner, as an “integrator” in MMEngine, covers all aspects of the framework and shoulders the responsibility of organizing and scheduling nearly all modules. Therefore, the code logic in it has to take into account various situations, making it relatively hard to understand. But don’t worry! In this tutorial, we will leave out some messy details and have a quick overview of commonly used APIs, functionalities, and examples. Hopefully, this should provide you with a clear and easy-to-understand user interface. After reading through this tutorial, you will be able to:

	Master the common usage and configuration of the runner

	Learn the best practice - writing config files - of the runner

	Know about the basic dataflow and execution order

	Feel by yourself the advantages of using runner (perhaps)

Example codes of the runner

To build your training pipeline with a runner, there are typically two ways to get started:

	Refer to runner’s API documentation for argument-by-argument configuration

	Make your custom modifications based on some existing configurations, such as Getting started in 15 minutes and downstream repositories like MMDet [https://github.com/open-mmlab/mmdetection]

Pros and cons lie in both approaches. For the former one, beginners may be lost in a vast number of configurable arguments. For the latter one, beginners may find it hard to get a good reference, since neither an over-simplified nor an over-detailed reference is conducive to them.

We argue that the key to learning runner is using it as a memo. You should remember its most commonly used arguments and only focus on those less used when in need, since default values usually work fine. In the following, we will provide a beginner-friendly example to illustrate the most commonly used arguments of the runner, along with advanced guidelines for those less used.

A beginer-friendly example

Hint

In this tutorial, we hope you can focus more on overall architecture instead of implementation details. This “top-down” way of thinking is exactly what we advocate. Don’t worry, you will definitely have plenty of opportunities and guidance afterward to focus on modules you want to improve.

Before running the actual example below, you should first run this piece of code for the preparation of the model, dataset, and metric. However, these implementations are not important in this tutorial and you can simply look through
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.utils.data import Dataset

from mmengine.model import BaseModel
from mmengine.evaluator import BaseMetric
from mmengine.registry import MODELS, DATASETS, METRICS

@MODELS.register_module()
class MyAwesomeModel(BaseModel):
 def __init__(self, layers=4, activation='relu') -> None:
 super().__init__()
 if activation == 'relu':
 act_type = nn.ReLU
 elif activation == 'silu':
 act_type = nn.SiLU
 elif activation == 'none':
 act_type = nn.Identity
 else:
 raise NotImplementedError
 sequence = [nn.Linear(2, 64), act_type()]
 for _ in range(layers-1):
 sequence.extend([nn.Linear(64, 64), act_type()])
 self.mlp = nn.Sequential(*sequence)
 self.classifier = nn.Linear(64, 2)

 def forward(self, data, labels, mode):
 x = self.mlp(data)
 x = self.classifier(x)
 if mode == 'tensor':
 return x
 elif mode == 'predict':
 return F.softmax(x, dim=1), labels
 elif mode == 'loss':
 return {'loss': F.cross_entropy(x, labels)}

@DATASETS.register_module()
class MyDataset(Dataset):
 def __init__(self, is_train, size):
 self.is_train = is_train
 if self.is_train:
 torch.manual_seed(0)
 self.labels = torch.randint(0, 2, (size,))
 else:
 torch.manual_seed(3407)
 self.labels = torch.randint(0, 2, (size,))
 r = 3 * (self.labels+1) + torch.randn(self.labels.shape)
 theta = torch.rand(self.labels.shape) * 2 * torch.pi
 self.data = torch.vstack([r*torch.cos(theta), r*torch.sin(theta)]).T

 def __getitem__(self, index):
 return self.data[index], self.labels[index]

 def __len__(self):
 return len(self.data)

@METRICS.register_module()
class Accuracy(BaseMetric):
 def __init__(self):
 super().__init__()

 def process(self, data_batch, data_samples):
 score, gt = data_samples
 self.results.append({
 'batch_size': len(gt),
 'correct': (score.argmax(dim=1) == gt).sum().cpu(),
 })

 def compute_metrics(self, results):
 total_correct = sum(r['correct'] for r in results)
 total_size = sum(r['batch_size'] for r in results)
 return dict(accuracy=100*total_correct/total_size)

Click to show a long example. Be well prepared
from torch.utils.data import DataLoader, default_collate
from torch.optim import Adam
from mmengine.runner import Runner

runner = Runner(
 # your model
 model=MyAwesomeModel(
 layers=2,
 activation='relu'),
 # work directory for saving checkpoints and logs
 work_dir='exp/my_awesome_model',

 # training data
 train_dataloader=DataLoader(
 dataset=MyDataset(
 is_train=True,
 size=10000),
 shuffle=True,
 collate_fn=default_collate,
 batch_size=64,
 pin_memory=True,
 num_workers=2),
 # training configurations
 train_cfg=dict(
 by_epoch=True, # display in epoch number instead of iterations
 max_epochs=10,
 val_begin=2, # start validation from the 2nd epoch
 val_interval=1), # do validation every 1 epoch

 # OptimizerWrapper, new concept in MMEngine for richer optimization options
 # Default value works fine for most cases. You may check our documentations
 # for more details, e.g. 'AmpOptimWrapper' for enabling mixed precision
 # training.
 optim_wrapper=dict(
 optimizer=dict(
 type=Adam,
 lr=0.001)),
 # ParamScheduler to adjust learning rates or momentums during training
 param_scheduler=dict(
 type='MultiStepLR',
 by_epoch=True,
 milestones=[4, 8],
 gamma=0.1),

 # validation data
 val_dataloader=DataLoader(
 dataset=MyDataset(
 is_train=False,
 size=1000),
 shuffle=False,
 collate_fn=default_collate,
 batch_size=1000,
 pin_memory=True,
 num_workers=2),
 # validation configurations, usually leave it an empty dict
 val_cfg=dict(),
 # evaluation metrics and evaluator
 val_evaluator=dict(type=Accuracy),

 # following are advanced configurations, try to default when not in need
 # hooks are advanced usage, try to default when not in need
 default_hooks=dict(
 # the most commonly used hook for modifying checkpoint saving interval
 checkpoint=dict(type='CheckpointHook', interval=1)),

 # `luancher` and `env_cfg` responsible for distributed environment
 launcher='none',
 env_cfg=dict(
 cudnn_benchmark=False, # whether enable cudnn_benchmark
 backend='nccl', # distributed communication backend
 mp_cfg=dict(mp_start_method='fork')), # multiprocessing configs
 log_level='INFO',

 # load model weights from given path. None for no loading.
 load_from=None,
 # resume training from the given path
 resume=False
)

start training your model
runner.train()

Explanations on example codes

Really a long piece of code, isn’t it! However, if you read through the above example, you may have already understood the training process in general even without knowing any implementation details, thanks to the compactness and readability of runner codes (probably). This is what MMEngine expects: a structured, modular, and standardized training process that allows for more reliable reproductions and clearer comparisons.

The above example may lead you to the following confusion:

There are too many arguments!
Don’t worry. As we mentioned before, use runner as a memo. The runner covers all aspects just to ensure you won’t miss something important. You don’t actually need to configure everything. The simple example in 15 minutes still works fine, and it can be even more simplified by removing val_evaluator, val_dataloader, and val_cfg without breaking down. All configurable arguments are driven by your demands. Those not in your focus usually work fine by default.

Why are some arguments passed as dicts?
Well, this is related to MMEngine’s style. In MMEngine, we provide 2 different styles of runner construction: a) manual construction and b) construction via registry. If you are confused, the following example will give a good illustration:

from mmengine.model import BaseModel
from mmengine.runner import Runner
from mmengine.registry import MODELS # root registry for your custom model

@MODELS.register_module() # decorator for registration
class MyAwesomeModel(BaseModel): # your custom model
 def __init__(self, layers=18, activation='silu'):
 ...

An example of construction via registry
runner = Runner(
 model=dict(
 type='MyAwesomeModel',
 layers=50,
 activation='relu'),
 ...
)

An example of manual construction
model = MyAwesomeModel(layers=18, activation='relu')
runner = Runner(
 model=model,
 ...
)

Similar to the above example, most arguments in the runner accept both 2 types of inputs. They are conceptually equivalent. The difference is, in the former style, the module (passed in as a dict) will be built in the runner when actually needed, while in the latter style, the module has been built before being passed to the runner. The following figure illustrates the core idea of registry: it maintains the mapping between a module’s build method and its registry name. If you want to learn more about the full usage of the registry, you are recommended to read Registry tutorial.

[image: Runner Registry Illustration]

You might still be confused after the explanation. Why should we let the Runner build modules from dicts? What are the benefits? If you have such questions, then we are proud to answer: “Absolutely - no benefits!” In fact, module construction via registry only works to its best advantage when combined with a configuration file. It is still far from the best practice to write as the above example. We provide it here just to make sure you can read and get used to this writing style, which may facilitate your understanding of the actual best practice we will soon talk about - the configuration file. Stay tuned!

If you as a beginner do not immediately understand, it doesn’t matter too much, because manual construction is still a good choice, especially for small-scale development and trial-and-error due to its being IDE friendly. However, you are still expected to read and get used to the writing style via registry, so that you can avoid being unnecessarily confused and puzzled in subsequent tutorials.

Where can I find the possible configuration options for the xxx argument?
You will find extensive instructions and examples in those tutorials of the corresponding modules. You can also find all possible arguments in Runner’s API documentation. If neither of the above resolves your query, you are always encouraged to start a topic in our discussion forum [https://github.com/open-mmlab/mmengine/discussions]. It also helps us improve documentation.

I come from repositoried like MMDet/MMCls... Why does this example differ from what I've been exposed to?
Downstream repositories in OpenMMLab have widely adopted the writing style of config files. In the following chapter, we will show the usage of config files, the best practice of the runner in MMEngine, based on the above example with a slight variation.

Best practice of the Runner - config files

MMEngine provides a powerful config file system that supports Python syntax. You can almost seamlessly (which we will illustrate below) convert from the previous sample code to a config file. Here is an example:

Save the following codes in example_config.py
Almost copied from the above example, with some commas removed
model = dict(type='MyAwesomeModel',
 layers=2,
 activation='relu')
work_dir = 'exp/my_awesome_model'

train_dataloader = dict(
 dataset=dict(type='MyDataset',
 is_train=True,
 size=10000),
 sampler=dict(
 type='DefaultSampler',
 shuffle=True),
 collate_fn=dict(type='default_collate'),
 batch_size=64,
 pin_memory=True,
 num_workers=2)
train_cfg = dict(
 by_epoch=True,
 max_epochs=10,
 val_begin=2,
 val_interval=1)
optim_wrapper = dict(
 optimizer=dict(
 type='Adam',
 lr=0.001))
param_scheduler = dict(
 type='MultiStepLR',
 by_epoch=True,
 milestones=[4, 8],
 gamma=0.1)

val_dataloader = dict(
 dataset=dict(type='MyDataset',
 is_train=False,
 size=1000),
 sampler=dict(
 type='DefaultSampler',
 shuffle=False),
 collate_fn=dict(type='default_collate'),
 batch_size=1000,
 pin_memory=True,
 num_workers=2)
val_cfg = dict()
val_evaluator = dict(type='Accuracy')

default_hooks = dict(
 checkpoint=dict(type='CheckpointHook', interval=1))
launcher = 'none'
env_cfg = dict(
 cudnn_benchmark=False,
 backend='nccl',
 mp_cfg=dict(mp_start_method='fork'))
log_level = 'INFO'
load_from = None
resume = False

Given the above config file, we can simply load configurations and run the training pipeline in a few lines of codes as follows:

from mmengine.config import Config
from mmengine.runner import Runner
config = Config.fromfile('example_config.py')
runner = Runner.from_cfg(config)
runner.train()

Note

Although it supports Python syntax, a valid config file needs to meet the condition that all variables must be Python built-in types such as str, dict and int. Therefore, the config system is highly dependent on the registry mechanism to enable construction from built-in types to other types such as nn.Module.

Note

When using config files, you typically don’t need to manually register every module. For instance, all optimizers in torch.optim including Adam and SGD have already been registered in mmengine.optim. The rule of thumb is, try to directly access modules provided by PyTorch, and only start to register them manually after error occurs.

Note

When using config files, the implementations of your custom modules may be stored in separate files and thus not registered properly, which will lead to errors in the build process. You may find solutions in Config tutorial.

Warning

Although sharing nearly the same codes, from_cfg and __init__ differs in some default values like env_cfg.

Writing config files of the runner has been widely adopted in downstream repositories in OpenMMLab projects. It has been a de facto convention and best practice. The config files are far more featured than illustrated above. You can refer to Config tutorial for more advanced features including keywords inheriting and overriding.

Basic dataflow

Hint

In this chapter, we’ll dive deeper into the runner to illustrate dataflow and data format convention between modules managed by the runner. It may be relatively abstract and dry if you haven’t built a training pipeline with MMEngine. Therefore, you are free to skip for now and read it in conjunction with practice in the future when in need.

Now let’s dive slightly deeper into the runner, and illustrate the dataflow and data format convention under the hood (or, under the engine)!

[image: Basic Dataflow]

The diagram above illustrates the basic dataflow of the runner, where the dashed border, gray filled shapes represent different data formats, while solid boxes represent modules/methods. Due to the great flexibility and extensibility of MMEngine, you can always inherit some key base classes and override their methods, so the above diagram doesn’t always hold. It only holds when you are not customizing your own Runner or TrainLoop, and you are not overriding train_step, val_step or test_step method in your custom model. Actually, this is common for most tasks like detection and segmentation, as referred to Model tutorial.

Can you state the exact type of each data item shown in the diagram?
Unfortunately, this is not possible. Although we did heavy type annotations in MMEngine, Python is still a highly dynamic programming language, and deep learning as a data-centric system needs to be flexible enough to deal with a wide range of complex data sources. You always have full freedom to decide when you need (and sometimes must) break type conventions. Therefore, when you are customizing your module (e.g. val_evaluator), you need to make sure its input is compatible with upstream (e.g. model) output and its output can be parsed by downstream. MMEngine puts the flexibility of handling data in the hands of the user, and thus also requires the user to ensure compatibility of dataflow, which, in fact, is not that difficult once you get started.

The uniformity of data formats has always been a problem in deep learning. We are trying to improve it in MMEngine in our own way. If you are interested, you can refer to BaseDataset and BaseDataElement - but please note that they are mainly geared towards advanced users.

What's the data format convention between dataloader, model and evaluator?
For the basic dataflow shown in the diagram above, the data transfer between the above three modules can be represented by the following pseudo-code:

training
for data_batch in train_dataloader:
 data_batch = data_preprocessor(data_batch)
 if isinstance(data_batch, dict):
 losses = model.forward(**data_batch, mode='loss')
 elif isinstance(data_batch, (list, tuple)):
 losses = model.forward(*data_batch, mode='loss')
 else:
 raise TypeError()

validation
for data_batch in val_dataloader:
 data_batch = data_preprocessor(data_batch)
 if isinstance(data_batch, dict):
 outputs = model.forward(**data_batch, mode='predict')
 elif isinstance(data_batch, (list, tuple)):
 outputs = model.forward(**data_batch, mode='predict')
 else:
 raise TypeError()
 evaluator.process(data_samples=outputs, data_batch=data_batch)
metrics = evaluator.evaluate(len(val_dataloader.dataset))

The key points of the above pseudo-code is:

	Outputs of data_preprocessor are passed to model after unpacking

	The data_samples argument of the evaluator receives the prediction results of the model, while the data_batch argument receives the raw data coming from dataloader

What is data_preprocessor? Can I do image pre-processing such as crop and resize in it?
Though drawn separately in the diagram, data_preprocessor is a part of the model and thus can be found in Model tutorial in DataPreprocessor chapter.

In most cases, data_preprocessor needs no special attention or manual configuration. The default data_preprocessor will only do data transfer between host and GPU devices. However, if your model has incompatible inputs format with dataloader’s output, you can also customize you own data_preprocessor for data formatting.

Image pre-processing such as crop and resize is more recommended in data transforms module, but for batch-related data transforms (e.g. batch-resize), it can be implemented here.

Why does module produce 3 different outputs? What is the meaning of "loss", "predict" and "tensor"?
As described in get started in 15 minutes, you need to implement 3 data paths in your custom model’s forward function to suit different pipelines for training, validation and testing. This is further discussed in Model tutorial.

I can see that the red line is for training process and the blue line for validation/testing, but what is the green line?
Currently model outputs in “tensor” mode has not been officially used in runner. The “tensor” mode can output some intermediate results and thus facilitating debugging process.

What if I override methods such as train_step? Will the diagram totally fail?
The behavior of default train_step, val_step and test_step covers the dataflow from data_preprocessor to model outputs and optim_wrapper. The rest of the diagram will not be spoiled.

Why use the runner? (Optional reading)

Hint

Contents in this chapter will not teach you how to use the runner and MMEngine. If you are being pushed by your employer/advisor/DDL to work out a result in a few hours, it may not help you and you can feel free to skip it. However, we highly recommend taking time to read through this chapter, since it will help you better understand the aim and style of MMEngine.

Relax, time for some philosophy
Congratulations for reading through the runner tutorial, a long, long but kind of interesting (hope so) tutorial! Please believe that all of these - this tutorial, the runner, MMEngine - are intended to make things easier for you.

The runner is the “manager” of all modules in MMEngine. In the runner, all the distinct modules - whether visible ones like model and dataset, or obscure ones like logging, distributed environment and random seed - are getting organized and scheduled. The runner deals with the complex relationship between different modules and provides you with a clear, easy-to-understand and configurable interface. The benefits of this design are:

	You can modify or add your codes without spoiling your whole codebase. For example, you may start with single GPU training and you can always add a few lines of configuration codes to enable multi GPUs or even multi nodes training.

	You can continuously benefit from new features without worrying about backward compatibility. Mixed precision training, visualization, state of the art distributed training methods, various device backends… We will continue to absorb the best suggestions and cutting-edge technologies from the community while ensuring backward compatibility, and provide them to you in a clear interface.

	You can focus on your own awesome ideas without being bothered by other annoying and irrelevant details. The default values will handle most cases.

So, MMEngine and the runner will truly make things easier for you. With only a little effort on migration, your code and experiments will evolve with MMEngine. With a little more effort, the config file system allows you to manage your data, model, and experiments more efficiently. Convenience and reliability are the aims we strive for.

The blue one, or the red one - are you prepared to use MMEngine?

Suggestions on next steps

If you want to:

Write your own model structure
Refer to Model tutorial

Use your own datasets
Refer to Dataset and DataLoader tutorial

Change evaluation metrics
Refer to Evaluation tutorial

Do something related to optimizers or mixed-precision training
Refer to OptimWrapper tutorial

Schedule learning rates or other parameters during training
Refer to Parameter Scheduler tutorial

Something not mentioned above

	“Common Usage” section to the left contains more example codes

	“Advanced tutorials” to the left consists of more contents for experienced developers to make more flexible extensions to the training pipeline

	Hook provides some flexible modifications without spoiling your codes

	If none of the above solves your problem, you are always welcome to start a topic in our discussion forum [https://github.com/open-mmlab/mmengine/discussions]!

 Dataset and DataLoader

Dataset and DataLoader

Hint

If you have never been exposed to PyTorch’s Dataset and DataLoader classes, you are recommended to read through PyTorch official tutorial [https://pytorch.org/tutorials/beginner/basics/data_tutorial.html] to get familiar with some basic concepts.

Datasets and DataLoaders are necessary components in MMEngine’s training pipeline. They are conceptually derived from and consistent with PyTorch. Typically, a dataset defines the quantity, parsing, and pre-processing of the data, while a dataloader iteratively loads data according to settings such as batch_size, shuffle, num_workers, etc. Datasets are encapsulated with dataloaders and they together constitute the data source.

In this tutorial, we will step through their usage in MMEngine runner from the outside (dataloader) to the inside (dataset) and give some practical examples. After reading through this tutorial, you will be able to:

	Master the configuration of dataloaders in MMEngine

	Learn to use existing datasets (e.g. those from torchvision) from config files

	Know about building and using your own dataset

Details on dataloader

Dataloaders can be configured in MMEngine’s Runner with 3 arguments:

	train_dataloader: Used in Runner.train() to provide training data for models

	val_dataloader: Used in Runner.val() or in Runner.train() at regular intervals for model evaluation

	test_dataloader: Used in Runner.test() for the final test

MMEngine has full support for PyTorch native DataLoader objects. Therefore, you can simply pass your valid, already built dataloaders to the runner, as shown in getting started in 15 minutes. Meanwhile, thanks to the Registry Mechanism of MMEngine, those arguments also accept dicts as inputs, as illustrated in the following example (referred to as example 1). The keys in the dictionary correspond to arguments in DataLoader’s init function.

runner = Runner(
 train_dataloader=dict(
 batch_size=32,
 sampler=dict(
 type='DefaultSampler',
 shuffle=True),
 dataset=torchvision.datasets.CIFAR10(...),
 collate_fn=dict(type='default_collate')
)
)

When passed to the runner in the form of a dict, the dataloader will be lazily built in the runner when actually needed.

Note

For more configurable arguments of the DataLoader, please refer to PyTorch API documentation [https://pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader]

Note

If you are interested in the details of the building procedure, you may refer to build_dataloader

You may find example 1 differs from that in getting started in 15 minutes in some arguments. Indeed, due to some obscure conventions in MMEngine, you can’t seamlessly switch it to a dict by simply replacing DataLoader with dict. We will discuss the differences between our convention and PyTorch’s in the following sections, in case you run into trouble when using config files.

sampler and shuffle

One obvious difference is that we add a sampler argument to the dict. This is because we require sampler to be explicitly specified when using a dict as a dataloader. Meanwhile, shuffle is also removed from DataLoader arguments, because it conflicts with sampler in PyTorch, as referred to in PyTorch DataLoader API documentation [https://pytorch.org/docs/stable/data.html#torch.utils.data.DataLoader].

Note

In fact, shuffle is just a notation for convenience in PyTorch implementation. If shuffle is set to True, the dataloader will automatically switch to RandomSampler

With a sampler argument, codes in example 1 is nearly equivalent to code block below

from mmengine.dataset import DefaultSampler

dataset = torchvision.datasets.CIFAR10(...)
sampler = DefaultSampler(dataset, shuffle=True)

runner = Runner(
 train_dataloader=DataLoader(
 batch_size=32,
 sampler=sampler,
 dataset=dataset,
 collate_fn=default_collate
)
)

Warning

The equivalence of the above codes holds only if: 1) you are training with a single process, and 2) no randomness argument is passed to the runner. This is due to the fact that sampler should be built after distributed environment setup to be correct. The runner will guarantee the correct order and proper random seed by applying lazy initialization techniques, which is only possible for dict inputs. Instead, when building a sampler manually, it requires extra work and is highly error-prone. Therefore, the code block above is just for illustration and definitely not recommended. We strongly suggest passing sampler as a dict to avoid potential problems.

DefaultSampler

The above example may make you wonder what a DefaultSampler is, why use it and whether there are other options. In fact, DefaultSampler is a built-in sampler in MMEngine which eliminates the gap between distributed and non-distributed training and thus enabling a seamless conversion between them. If you have the experience of using DistributedDataParallel in PyTorch, you may be impressed by having to change the sampler argument to make it correct. However, in MMEngine, you don’t need to bother with this DefaultSampler.

DefaultSampler accepts the following arguments:

	shuffle: Set to True to load data in the dataset in random order

	seed: Random seed used to shuffle the dataset. Typically it doesn’t require manual configuration here because the runner will handle it with randomness configuration

	round_up: When set this to True, this is the same behavior as setting drop_last=False in PyTorch DataLoader. You should take care of it when doing migration from PyTorch.

Note

For more details about DefaultSampler, please refer to its API docs

DefaultSampler handles most of the cases. We ensure that error-prone details such as random seeds are handled properly when you are using it in a runner. This prevents you from getting into troubles with distributed training. Apart from DefaultSampler, you may also be interested in InfiniteSampler for iteration-based training pipelines. If you have more advanced demands, you may want to refer to the codes of these two built-in samplers to implement your own one and register it to DATA_SAMPLERS registry.

@DATA_SAMPLERS.register_module()
class MySampler(Sampler):
 pass

runner = Runner(
 train_dataloader=dict(
 sampler=dict(type='MySampler'),
 ...
)
)

The obscure collate_fn

Among the arguments of PyTorch DataLoader, collate_fn is often ignored by users, but in MMEngine you must pay special attention to it. When you pass the dataloader argument as a dict, MMEngine will use the built-in pseudo_collate by default, which is significantly different from that, default_collate [https://pytorch.org/docs/stable/data.html#torch.utils.data.default_collate], in PyTorch. Therefore, when doing a migration from PyTorch, you have to explicitly specify the collate_fn in config files to be consistent in behavior.

Note

MMEngine uses pseudo_collate as default value is mainly due to historical compatibility reasons. You don’t have to look deeply into it. You can just know about it and avoid potential errors.

MMEngine provides 2 built-in collate_fn:

	pseudo_collate: Default value in MMEngine. It won’t concatenate data through batch index. Detailed explanations can be found in pseudo_collate API doc

	default_collate: It behaves almost identically to PyTorch’s default_collate. It will transfer data into Tensor and concatenate them through batch index. More details and slight differences from PyTorch can be found in default_collate API doc

If you want to use a custom collate_fn, you can register it to FUNCTIONS registry.

@FUNCTIONS.register_module()
def my_collate_func(data_batch: Sequence) -> Any:
 pass

runner = Runner(
 train_dataloader=dict(
 ...
 collate_fn=dict(type='my_collate_func')
)
)

Details on dataset

Typically, datasets define the quantity, parsing, and pre-processing of the data. It is encapsulated in dataloader, allowing the latter to load data in batches. Since we fully support PyTorch DataLoader, the dataset is also compatible. Meanwhile, thanks to the registry mechanism, when a dataloader is given as a dict, its dataset argument can also be given as a dict, which enables lazy initialization in the runner. This mechanism allows for writing config files.

Use torchvision datasets

torchvision provides various open datasets. They can be directly used in MMEngine as shown in getting started in 15 minutes, where a CIFAR10 dataset is used together with torchvision’s built-in data transforms.

However, if you want to use the dataset in config files, registration is needed. What’s more, if you also require data transforms in torchvision, some more registrations are required. The following example illustrates how to do it.

import torchvision.transforms as tvt
from mmengine.registry import DATASETS, TRANSFORMS
from mmengine.dataset.base_dataset import Compose

register CIFAR10 dataset in torchvision
data transforms should also be built here
@DATASETS.register_module(name='Cifar10', force=False)
def build_torchvision_cifar10(transform=None, **kwargs):
 if isinstance(transform, dict):
 transform = [transform]
 if isinstance(transform, (list, tuple)):
 transform = Compose(transform)
 return torchvision.datasets.CIFAR10(**kwargs, transform=transform)

register data transforms in torchvision
DATA_TRANSFORMS.register_module('RandomCrop', module=tvt.RandomCrop)
DATA_TRANSFORMS.register_module('RandomHorizontalFlip', module=tvt.RandomHorizontalFlip)
DATA_TRANSFORMS.register_module('ToTensor', module=tvt.ToTensor)
DATA_TRANSFORMS.register_module('Normalize', module=tvt.Normalize)

specify in runner
runner = Runner(
 train_dataloader=dict(
 batch_size=32,
 sampler=dict(
 type='DefaultSampler',
 shuffle=True),
 dataset=dict(type='Cifar10',
 root='data/cifar10',
 train=True,
 download=True,
 transform=[
 dict(type='RandomCrop', size=32, padding=4),
 dict(type='RandomHorizontalFlip'),
 dict(type='ToTensor'),
 dict(type='Normalize', **norm_cfg)])
)
)

Note

The above example makes extensive use of the registry mechanism and borrows the Compose module from MMEngine. If you urge to use torchvision dataset in your config files, you can refer to it and make some slight modifications. However, we recommend you borrow datasets from downstream repos such as MMDet [https://github.com/open-mmlab/mmdetection], MMPretrain [https://github.com/open-mmlab/mmpretrain], etc. This may give you a better experience.

Customize your dataset

You are free to customize your own datasets, as you would with PyTorch. You can also copy existing datasets from your previous PyTorch projects. If you want to learn how to customize your dataset, please refer to PyTorch official tutorials [https://pytorch.org/tutorials/beginner/basics/data_tutorial.html#creating-a-custom-dataset-for-your-files]

Use MMEngine BaseDataset

Apart from directly using PyTorch native Dataset class, you can also use MMEngine’s built-in class BaseDataset to customize your own one, as referred to BaseDataset tutorial. It makes some conventions on the format of annotation files, which makes the data interface more unified and multi-task training more convenient. Meanwhile, BaseDataset can easily cooperate with built-in data transforms in MMEngine, which releases you from writing one from scratch.

Currently, BaseDataset has been widely used in downstream repos of OpenMMLab 2.0 projects.

 Model

Model

Runner and model

As mentioned in basic dataflow, the dataflow between DataLoader, model and evaluator follows some rules. Don’t remember clearly? Let’s review it:

Training process
for data_batch in train_dataloader:
 data_batch = model.data_preprocessor(data_batch, training=True)
 if isinstance(data_batch, dict):
 losses = model(**data_batch, mode='loss')
 elif isinstance(data_batch, (list, tuple)):
 losses = model(*data_batch, mode='loss')
 else:
 raise TypeError()
Validation process
for data_batch in val_dataloader:
 data_batch = model.data_preprocessor(data_batch, training=False)
 if isinstance(data_batch, dict):
 outputs = model(**data_batch, mode='predict')
 elif isinstance(data_batch, (list, tuple)):
 outputs = model(**data_batch, mode='predict')
 else:
 raise TypeError()
 evaluator.process(data_samples=outputs, data_batch=data_batch)
metrics = evaluator.evaluate(len(val_dataloader.dataset))

In runner tutorial, we simply mentioned the relationship between DataLoader, model and evaluator, and introduced the concept of data_preprocessor. You may have a certain understanding of the model. However, during the running of Runner, the situation is far more complex than the above pseudo-code.

In order to focus your attention on the algorithm itself, and ignore the complex relationship between the model, DataLoader and evaluator, we designed BaseModel. In most cases, the only thing you need to do is to make your model inherit from BaseModel, and implement the forward as required to perform the training, testing, and validation process.

Before continuing reading the model tutorial, let’s throw out two questions that we hope you will find the answers after reading the model tutorial:

	When do we update the parameters of model? and how to update the parameters by a custom optimization process?

	Why is the concept of data_preprocessor necessary? What functions can it perform?

Interface introduction

Usually, we should define a model to implement the body of the algorithm. In MMEngine, model will be managed by Runner, and need to implement some interfaces, such as train_step, val_step, and test_step. For high-level tasks like detection, classification, and segmentation, the interfaces mentioned above commonly implement a standard workflow. For example, train_step will calculate the loss and update the parameters of the model, and val_step/test_step will calculate the metrics and return the predictions. Therefore, MMEnine abstracts the BaseModel to implement the common workflow.

Benefits from the BaseModel, we only need to make the model inherit from BaseModel, and implement the forward function to perform the training, testing, and validation process.

Note

BaseModel inherits from BaseModule，which can be used to initialize the model parameters dynamically.

forward: The arguments of forward need to match with the data given by DataLoader [https://pytorch.org/tutorials/beginner/basics/data_tutorial.html]. If the DataLoader samples a tuple data, forward needs to accept the value of unpacked *data. If DataLoader returns a dict data, forward needs to accept the key-value of unpacked **data. forward also accepts mode parameter, which is used to control the running branch:

	mode='loss': loss mode is enabled in training process, and forward returns a differentiable loss dict. Each key-value pair in loss dict will be used to log the training status and optimize the parameters of model. This branch will be called by train_step

	mode='predict': predict mode is enabled in validation/testing process, and forward will return predictions, which matches with arguments of process. Repositories of OpenMMLab have a more strict rules. The predictions must be a list and each element of it must be a BaseDataElement. This branch will be called by val_step

	mode='tensor': In tensor and predict modes, forward will return the predictions. The difference is that forward will return a tensor or a container or tensor which has not been processed by a series of post-process methods, such as non-maximum suppression (NMS). You can customize your post-process method after getting the result of tensor mode.

train_step: Get the loss dict by calling forward with loss mode. BaseModel implements a standard optimization process as follows:

def train_step(self, data, optim_wrapper):
 # See details in the next section
 data = self.data_preprocessor(data, training=True)
 # `loss` mode, return a loss dict. Actually train_step accepts
 # both tuple dict input, and unpack it with ** or *
 loss = self(**data, mode='loss')
 # Parse the loss dict and return the parsed losses for optimization
 # and log_vars for logging
 parsed_losses, log_vars = self.parse_losses()
 optim_wrapper.update_params(parsed_losses)
 return log_vars

val_step: Get the predictions by calling forward with predict mode.

def val_step(self, data, optim_wrapper):
 data = self.data_preprocessor(data, training=False)
 outputs = self(**data, mode='predict')
 return outputs

test_step: There is no difference between val_step and test_step in BaseModel. But we can customize it in the subclasses, for example, you can get validation loss in val_step.

Understand the interfaces of BaseModel, now we are able to come up with a more complete pseudo-code:

training
for data_batch in train_dataloader:
 loss_dict = model.train_step(data_batch)
validation
for data_batch in val_dataloader:
 preds = model.test_step(data_batch)
 evaluator.process(data_samples=outputs, data_batch=data_batch)
metrics = evaluator.evaluate(len(val_dataloader.dataset))

Great!, ignoring Hook, the pseudo-code above almost implements the main logic in loop! Let’s go back to 15 minutes to get started with MMEngine, we may truly understand what MMResNet has done:

import torch.nn.functional as F
import torchvision
from mmengine.model import BaseModel

class MMResNet50(BaseModel):
 def __init__(self):
 super().__init__()
 self.resnet = torchvision.models.resnet50()

 def forward(self, imgs, labels, mode):
 x = self.resnet(imgs)
 if mode == 'loss':
 return {'loss': F.cross_entropy(x, labels)}
 elif mode == 'predict':
 return x, labels

 # train_step, val_step and test_step have been implemented in BaseModel.
 # We list the equivalent code here for better understanding
 def train_step(self, data, optim_wrapper):
 data = self.data_preprocessor(data)
 loss = self(*data, mode='loss')
 parsed_losses, log_vars = self.parse_losses()
 optim_wrapper.update_params(parsed_losses)
 return log_vars

 def val_step(self, data, optim_wrapper):
 data = self.data_preprocessor(data)
 outputs = self(*data, mode='predict')
 return outputs

 def test_step(self, data, optim_wrapper):
 data = self.data_preprocessor(data)
 outputs = self(*data, mode='predict')
 return outputs

Now, you may have a deeper understanding of dataflow, and can answer the first question in Runner and model.

BaseModel.train_step implements the standard optimization, and if we want to customize a new optimization process, we can override it in the subclass. However, it is important to note that we need to make sure that train_step returns a loss dict.

DataPreprocessor

If your computer is equipped with a GPU (or other hardware that can accelerate training, such as MPS, IPU, etc.), when you run the 15 minutes tutorial, you will see that the program is running on the GPU, but, when does MMEngine move the data and model from the CPU to the GPU?

In fact, the Runner will move the model to the specified device during the construction, while the data will be moved to the specified device at the self.data_preprocessor(data) mentioned in the code snippet of the previous section. The moved data will be further passed to the model.

Makes sense but it’s weird, isn’t it? At this point you may be wondering:

	MMResNet50 does not define data_preprocessor, but why it can still access data_preprocessor and move data to GPU?

	Why BaseModel does not move data by data = data.to(device), but needs the DataPreprocessor to move data?

The answer to the first question is that: MMResNet50 inherit from BaseModel, and super().__init__ will build a default data_preprocessor for it. The equivalent implementation of the default one is like this:

class BaseDataPreprocessor(nn.Module):
 def forward(self, data, training=True): # ignore the training parameter here
 # suppose data given by CIFAR10 is a tuple. Actually
 # BaseDataPreprocessor could move various type of data
 # to target device.
 return tuple(_data.cuda() for _data in data)

BaseDataPreprocessor will move the data to the specified device.

Before answering the second question, let’s think about a few more questions

	Where should we perform normalization? transform or Model?

It sounds reasonable to put it in transform to take advantage of Dataloader’s multi-process acceleration, and in the model to move it to GPU to use GPU resources to accelerate normalization. However, while we are debating whether CPU normalization is faster than GPU normalization, the time of data moving from CPU to GPU is much longer than the former.

In fact, for less computationally intensive operations like normalization, it takes much less time than data transferring, which has a higher priority for being optimized. If I could move the data to the specified device while it is still in uint8 and before it is normalized (the size of normalized float data is 4 times larger than that of unit8), it would reduce the bandwidth and greatly improve the efficiency of data transferring. This “lagged” normalization behavior is one of the main reasons why we designed the DataPreprocessor. The data preprocessor moves the data first and then normalizes it.

	How we implement the data augmentation like MixUp and Mosaic?

Although it seems that MixUp and Mosaic are just special data transformations that should be implemented in transform. However, considering that these two transformations involve fusing multiple images into one, it would be very difficult to implement them in transform since the current paradigm of transform is to do various enhancements on one image. It would be hard to read additional images from dataset because the dataset is not accessible in the transform. However, if we implement Mosaic or Mixup based on the batch_data sampled from Dataloader, everything becomes easy. We can access multiple images at the same time, and we can easily perform the image fusion operation.

class MixUpDataPreprocessor(nn.Module):
 def __init__(self, num_class, alpha):
 self.alpha = alpha

 def forward(self, data, training=True):
 data = tuple(_data.cuda() for _data in data)
 # Only perform MixUp in training mode
 if not training:
 return data

 label = F.one_hot(label) # label to OneHot
 batch_size = len(label)
 index = torch.randperm(batch_size) # Get the index of fused image
 img, label = data
 lam = np.random.beta(self.alpha, self.alpha) # Fusion factor

 # MixUp
 img = lam * img + (1 - lam) * img[index, :]
 label = lam * batch_scores + (1 - lam) * batch_scores[index, :]
 # Since the returned label is onehot encoded, the `forward` of the
 # model should also be adjusted.
 return tuple(img, label)

Therefore, besides data transferring and normalization, another major function of data_preprocessor is BatchAugmentation. The modularity of the data preprocessor also helps us to achieve a free combination between algorithms and data augmentation.

	What should we do if the data sampled from the DataLoader does not match the model input, should I modify the DataLoader or the model interface?

The answer is: neither is appropriate. The ideal solution is to do the adaptation without breaking the existing interface between the model and the DataLoader. DataPreprocessor could also handle this, you can customize your DataPreprocessor to convert the incoming to the target type.

By now, You must understand the rationale of the data preprocessor and can confidently answer the two questions posed at the beginning of the tutorial! But you may still wonder what is the optim_wrapper passed to train_step, and how do the predictions returned by test_step and val_step relate to the evaluator. You will find more introduction in the evaluation tutorial and the optimizer wrapper tutorial.

 Evaluation

Evaluation

In model validation and testing, it is often necessary to make a quantitative evaluation of model accuracy. We can achieve this by specifying the metrics in the configuration file.

Evaluation in model training or testing

Using a single evaluation metric

When training or testing a model based on MMEngine, users only need to specify the evaluation metrics for the validation and testing stages through the val_evaluator and test_evaluator fields in the configuration file. For example, when using MMPretrain [https://github.com/open-mmlab/mmpretrain] to train a classification model, if the user wants to evaluate the top-1 and top-5 classification accuracy during the model validation stage, they can configure it as follows:

using classification accuracy evaluation metric
val_evaluator = dict(type='Accuracy', top_k=(1, 5))

For specific parameter settings of evaluation metrics, users can refer to the documentation of the relevant algorithm libraries, such as the Accuracy [https://mmpretrain.readthedocs.io/en/latest/api/generated/mmpretrain.evaluation.Accuracy.html#mmpretrain.evaluation.Accuracy] documentation in the above example.

Using multiple evaluation metrics

If multiple evaluation metrics need to be evaluated simultaneously, val_evaluator or test_evaluator can be set as a list, with each item being the configuration information for an evaluation metric. For example, when using MMDetection [https://github.com/open-mmlab/mmdetection] to train a panoptic segmentation model, if the user wants to evaluate both the object detection (COCO AP/AR) and panoptic segmentation accuracy during the model testing stage, they can configure it as follows:

test_evaluator = [
 # object detection metric
 dict(
 type='CocoMetric',
 metric=['bbox', 'segm'],
 ann_file='annotations/instances_val2017.json',
),
 # panoramic segmentation metric
 dict(
 type='CocoPanopticMetric',
 ann_file='annotations/panoptic_val2017.json',
 seg_prefix='annotations/panoptic_val2017',
)
]

Customizing evaluation metrics

If the common evaluation metrics provided in the algorithm library cannot meet the needs, users can also add custom evaluation metrics. As an example, we present the implementation of custom metrics with the simplified classification accuracy:

	When defining a new evaluation metric class, you need to inherit the base class BaseMetric (for an introduction to this base class, you can refer to the design document). In addition, the evaluation metric class needs to be registered with the registrar METRICS (for a description of the registrar, please refer to the Registry documentation).

	Implement the process() method. This method has two input parameters, which are a batch of test data samples, data_batch, and model prediction results, data_samples. We extract the sample category labels and the classification prediction results from them and store them in self.results respectively.

	Implement the compute_metrics() method. This method has one input parameter results, which holds the results of all batches of test data processed by the process() method. The sample category labels and classification predictions are extracted from the results to calculate the classification accuracy (acc). Finally, the calculated evaluation metrics are returned in the form of a dictionary.

	(Optional) You can assign a value to the class attribute default_prefix. This attribute is automatically prefixed to the output metric name (e.g. defaut_prefix='my_metric', then the actual output metric name is 'my_metric/acc') to further distinguish the different metrics. This prefix can also be rewritten in the configuration file via the prefix parameter. We recommend describing the default_prefix value for the metric class and the names of all returned metrics in the docstring.

The specific implementation is as follows:

from typing import Sequence, List

from mmengine.evaluator import BaseMetric
from mmengine.registry import METRICS

import numpy as np

@METRICS.register_module() # register the Accuracy class to the METRICS registry
class SimpleAccuracy(BaseMetric):
 """ Accuracy Evaluator

 Default prefix: ACC

 Metrics:
 - accuracy (float): classification accuracy
 """

 default_prefix = 'ACC' # set default_prefix

 def process(self, data_batch: Sequence[dict], data_samples: Sequence[dict]):
 """Process one batch of data and predictions. The processed
 Results should be stored in `self.results`, which will be used
 to compute the metrics when all batches have been processed.

 Args:
 data_batch (Sequence[Tuple[Any, dict]]): A batch of data
 from the dataloader.
 data_samples (Sequence[dict]): A batch of outputs from
 the model.
 """

 # fetch classification prediction results and category labels
 result = {
 'pred': data_samples['pred_label'],
 'gt': data_samples['data_sample']['gt_label']
 }

 # store the results of the current batch into self.results
 self.results.append(result)

 def compute_metrics(self, results: List):
 """Compute the metrics from processed results.

 Args:
 results (dict): The processed results of each batch.

 Returns:
 Dict: The computed metrics. The keys are the names of the metrics,
 and the values are corresponding results.
 """

 # aggregate the classification prediction results and category labels for all samples
 preds = np.concatenate([res['pred'] for res in results])
 gts = np.concatenate([res['gt'] for res in results])

 # calculate the classification accuracy
 acc = (preds == gts).sum() / preds.size

 # return evaluation metric results
 return {'accuracy': acc}

Using offline results for evaluation

Another common way of model evaluation is to perform offline evaluation using model prediction results saved in files in advance. In this case, the user needs to manually build Evaluator and call the corresponding interface of the evaluator to complete the evaluation. For more details about offline evaluation and the relationship between the evaluator and the metric, please refer to the design document. We only give an example of offline evaluation here:

from mmengine.evaluator import Evaluator
from mmengine.fileio import load

Build the evaluator. The parameter `metrics` is the configuration of the evaluation metric
evaluator = Evaluator(metrics=dict(type='Accuracy', top_k=(1, 5)))

Reads the test data from a file. The data format needs to refer to the metric used.
data = load('test_data.pkl')

The model prediction result is read from the file. The result is inferred by the algorithm to be evaluated on the test dataset.
The data format needs to refer to the metric used.
data_samples = load('prediction.pkl')

Call the evaluator offline evaluation interface and get the evaluation results
chunk_size indicates the number of samples processed at a time, which can be adjusted according to the memory size
results = evaluator.offline_evaluate(data, data_samples, chunk_size=128)

 OptimWrapper

OptimWrapper

In previous tutorials of runner and model, we have more or less mentioned the concept of OptimWrapper, but we have not introduced why we need it and what are the advantages of OptimWrapper compared to Pytorch’s native optimizer. In this tutorial, we will help you understand the advantages and demonstrate how to use the wrapper.

As its name suggests, OptimWrapper is a high-level abstraction of PyTorch’s native optimizer, which provides a unified set of interfaces while adding more functionality. OptimWrapper supports different training strategies, including mixed precision training, gradient accumulation, and gradient clipping. We can choose the appropriate training strategy according to our needs. OptimWrapper also defines a standard process for parameter updating based on which users can switch between different training strategies for the same set of code.

OptimWrapper vs Optimizer

Now we use both the native optimizer of PyTorch and the OptimWrapper in MMEngine to perform single-precision training, mixed-precision training, and gradient accumulation to show the difference in implementations.

Model training

1.1 Single-precision training with SGD in PyTorch

import torch
from torch.optim import SGD
import torch.nn as nn
import torch.nn.functional as F

inputs = [torch.zeros(10, 1, 1)] * 10
targets = [torch.ones(10, 1, 1)] * 10
model = nn.Linear(1, 1)
optimizer = SGD(model.parameters(), lr=0.01)
optimizer.zero_grad()

for input, target in zip(inputs, targets):
 output = model(input)
 loss = F.l1_loss(output, target)
 loss.backward()
 optimizer.step()
 optimizer.zero_grad()

1.2 Single-precision training with OptimWrapper in MMEngine

from mmengine.optim import OptimWrapper

optim_wrapper = OptimWrapper(optimizer=optimizer)

for input, target in zip(inputs, targets):
 output = model(input)
 loss = F.l1_loss(output, target)
 optim_wrapper.update_params(loss)

[image: image]

The OptimWrapper.update_params achieves the standard process for gradient computation, parameter updating, and gradient zeroing, which can be used to update the model parameters directly.

2.1 Mixed-precision training with SGD in PyTorch

from torch.cuda.amp import autocast

model = model.cuda()
inputs = [torch.zeros(10, 1, 1, 1)] * 10
targets = [torch.ones(10, 1, 1, 1)] * 10

for input, target in zip(inputs, targets):
 with autocast():
 output = model(input.cuda())
 loss = F.l1_loss(output, target.cuda())
 loss.backward()
 optimizer.step()
 optimizer.zero_grad()

2.2 Mixed-precision training with OptimWrapper in MMEngine

from mmengine.optim import AmpOptimWrapper

optim_wrapper = AmpOptimWrapper(optimizer=optimizer)

for input, target in zip(inputs, targets):
 with optim_wrapper.optim_context(model):
 output = model(input.cuda())
 loss = F.l1_loss(output, target.cuda())
 optim_wrapper.update_params(loss)

[image: image]

To enable mixed precision training, users need to use AmpOptimWrapper.optim_context which is similar to the autocast for enabling the context for mixed precision training. In addition, AmpOptimWrapper.optim_context can accelerate the gradient accumulation during the distributed training, which will be introduced in the next example.

3.1 Mixed-precision training and gradient accumulation with SGD in PyTorch

for idx, (input, target) in enumerate(zip(inputs, targets)):
 with autocast():
 output = model(input.cuda())
 loss = F.l1_loss(output, target.cuda())
 loss.backward()
 if idx % 2 == 0:
 optimizer.step()
 optimizer.zero_grad()

3.2 Mixed-precision training and gradient accumulation with OptimWrapper in MMEngine

optim_wrapper = AmpOptimWrapper(optimizer=optimizer, accumulative_counts=2)

for input, target in zip(inputs, targets):
 with optim_wrapper.optim_context(model):
 output = model(input.cuda())
 loss = F.l1_loss(output, target.cuda())
 optim_wrapper.update_params(loss)

[image: image]

We only need to configure the accumulative_counts parameter and call the update_params interface to achieve the gradient accumulation function. Besides, in the distributed training scenario, if we configure the gradient accumulation with optim_context context enabled, we can avoid unnecessary gradient synchronization during the gradient accumulation step.

The OptimWrapper also provides a more fine-grained interface for users to customize with their own parameter update logics.

	backward: Accept a loss dictionary, and compute the gradient of parameters.

	step: Same as optimizer.step, and update the parameters.

	zero_grad: Same as optimizer.zero_grad, and zero the gradient of parameters

We can use the above interface to implement the same logic of parameters updating as the Pytorch optimizer.

for idx, (input, target) in enumerate(zip(inputs, targets)):
 optimizer.zero_grad()
 with optim_wrapper.optim_context(model):
 output = model(input.cuda())
 loss = F.l1_loss(output, target.cuda())
 optim_wrapper.backward(loss)
 if idx % 2 == 0:
 optim_wrapper.step()
 optim_wrapper.zero_grad()

We can also configure a gradient clipping strategy for the OptimWrapper.

based on torch.nn.utils.clip_grad_norm_ method
optim_wrapper = AmpOptimWrapper(
 optimizer=optimizer, clip_grad=dict(max_norm=1))

based on torch.nn.utils.clip_grad_value_ method
optim_wrapper = AmpOptimWrapper(
 optimizer=optimizer, clip_grad=dict(clip_value=0.2))

Get learning rate/momentum

The OptimWrapper provides the get_lr and get_momentum for the convenience of getting the learning rate and momentum of the first parameter group in the optimizer.

import torch.nn as nn
from torch.optim import SGD

from mmengine.optim import OptimWrapper

model = nn.Linear(1, 1)
optimizer = SGD(model.parameters(), lr=0.01)
optim_wrapper = OptimWrapper(optimizer)

print(optimizer.param_groups[0]['lr']) # 0.01
print(optimizer.param_groups[0]['momentum']) # 0
print(optim_wrapper.get_lr()) # {'lr': [0.01]}
print(optim_wrapper.get_momentum()) # {'momentum': [0]}

0.01
0
{'lr': [0.01]}
{'momentum': [0]}

Export/load state dicts

Similar to the optimizer, the OptimWrapper provides the state_dict and load_state_dict interfaces for exporting and loading the optimizer states. For the AmpOptimWrapper, it can export mixed-precision training parameters as well.

import torch.nn as nn
from torch.optim import SGD
from mmengine.optim import OptimWrapper, AmpOptimWrapper

model = nn.Linear(1, 1)
optimizer = SGD(model.parameters(), lr=0.01)

optim_wrapper = OptimWrapper(optimizer=optimizer)
amp_optim_wrapper = AmpOptimWrapper(optimizer=optimizer)

export state dicts
optim_state_dict = optim_wrapper.state_dict()
amp_optim_state_dict = amp_optim_wrapper.state_dict()

print(optim_state_dict)
print(amp_optim_state_dict)
optim_wrapper_new = OptimWrapper(optimizer=optimizer)
amp_optim_wrapper_new = AmpOptimWrapper(optimizer=optimizer)

load state dicts
amp_optim_wrapper_new.load_state_dict(amp_optim_state_dict)
optim_wrapper_new.load_state_dict(optim_state_dict)

{'state': {}, 'param_groups': [{'lr': 0.01, 'momentum': 0, 'dampening': 0, 'weight_decay': 0, 'nesterov': False, 'maximize': False, 'foreach': None, 'params': [0, 1]}]}
{'state': {}, 'param_groups': [{'lr': 0.01, 'momentum': 0, 'dampening': 0, 'weight_decay': 0, 'nesterov': False, 'maximize': False, 'foreach': None, 'params': [0, 1]}], 'loss_scaler': {'scale': 65536.0, 'growth_factor': 2.0, 'backoff_factor': 0.5, 'growth_interval': 2000, '_growth_tracker': 0}}

Use multiple optimizers

Considering that algorithms like GANs usually need to use multiple optimizers to train the generator and the discriminator, MMEngine provides a container class called OptimWrapperDict to manage them. OptimWrapperDict stores the sub-OptimWrapper in the form of dict, and can be accessed and traversed just like a dict.

Unlike regular OptimWrapper, OptimWrapperDict does not provide methods such as update_prarms, optim_context, backward, step, etc. Therefore, it cannot be used directly to train models. We suggest implementing the logic of parameter updating by accessing the sub-OptimWarpper in OptimWrapperDict directly.

Users may wonder why not just use dict to manage multiple optimizers since OptimWrapperDict does not have training capabilities. Actually, the core function of OptimWrapperDict is to support exporting or loading the state dictionary of all sub-OptimWrapper and to support getting learning rates and momentums as well. Without OptimWrapperDict, MMEngine needs to do a lot of if-else in OptimWrapper to get the states of the OptimWrappers.

from torch.optim import SGD
import torch.nn as nn

from mmengine.optim import OptimWrapper, OptimWrapperDict

gen = nn.Linear(1, 1)
disc = nn.Linear(1, 1)
optimizer_gen = SGD(gen.parameters(), lr=0.01)
optimizer_disc = SGD(disc.parameters(), lr=0.01)

optim_wapper_gen = OptimWrapper(optimizer=optimizer_gen)
optim_wapper_disc = OptimWrapper(optimizer=optimizer_disc)
optim_dict = OptimWrapperDict(gen=optim_wapper_gen, disc=optim_wapper_disc)

print(optim_dict.get_lr()) # {'gen.lr': [0.01], 'disc.lr': [0.01]}
print(optim_dict.get_momentum()) # {'gen.momentum': [0], 'disc.momentum': [0]}

{'gen.lr': [0.01], 'disc.lr': [0.01]}
{'gen.momentum': [0], 'disc.momentum': [0]}

As shown in the above example, OptimWrapperDict exports learning rates and momentums for all OptimWrappers easily, and OptimWrapperDict can export and load all the state dicts in a similar way.

Configure the OptimWapper in Runner

We first need to configure the optimizer for the OptimWrapper. MMEngine automatically adds all optimizers in PyTorch to the OPTIMIZERS registry, and users can specify the optimizers they need in the form of a dict. All supported optimizers in PyTorch are listed here [https://pytorch.org/docs/stable/optim.html#algorithms].

Now we take setting up a SGD OptimWrapper as an example.

optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
optim_wrapper = dict(type='OptimWrapper', optimizer=optimizer)

Here we have set up an OptimWrapper with a SGD optimizer with the learning rate and momentum parameters as specified. Since OptimWrapper is designed for standard single precision training, we can also omit the type field in the configuration:

optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
optim_wrapper = dict(optimizer=optimizer)

To enable mixed-precision training and gradient accumulation, we change type to AmpOptimWrapper and specify the accumulative_counts parameter.

optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
optim_wrapper = dict(type='AmpOptimWrapper', optimizer=optimizer, accumulative_counts=2)

Note

If you are new to reading the MMEngine tutorial and are not familiar with concepts such as configs and registries, it is recommended to skip the following advanced tutorials for now and read other documents first. Of course, if you already have a good understanding of this prerequisite knowledge, we highly recommend reading the advanced part which covers:

	How to customize the learning rate, decay coefficient, and other parameters of the model parameters in the configuration of OptimWrapper.

	how to customize the construction policy of the optimizer.

Apart from the pre-requisite knowledge of the configs and the registries, it is recommended to have a thorough understanding of the native construction of PyTorch optimizer before starting the advanced tutorials.

Advanced usages

PyTorch’s optimizer allows different hyperparameters to be set for each parameter in the model, such as using different learning rates for the backbone and head for a classification model.

from torch.optim import SGD
import torch.nn as nn

model = nn.ModuleDict(dict(backbone=nn.Linear(1, 1), head=nn.Linear(1, 1)))
optimizer = SGD([{'params': model.backbone.parameters()},
 {'params': model.head.parameters(), 'lr': 1e-3}],
 lr=0.01,
 momentum=0.9)

In the above example, we set a learning rate of 0.01 for the backbone, while another learning rate of 1e-3 for the head. Users can pass a list of dictionaries containing the different parts of the model’s parameters and their corresponding hyperparameters to the optimizer, allowing for fine-grained adjustment of the model optimization.

In MMEngine, the optimizer wrapper constructor allows users to set hyperparameters in different parts of the model directly by setting the paramwise_cfg in the configuration file rather than by modifying the code of building the optimizer.

Set different hyperparamters for different types of parameters

The default optimizer wrapper constructor in MMEngine supports setting different hyperparameters for different types of parameters in the model. For example, we can set norm_decay_mult=0 for paramwise_cfg to set the weight decay factor to 0 for the weight and bias of the normalization layer to implement the trick of not decaying the weight of the normalization layer as mentioned in the Bag of Tricks [https://arxiv.org/abs/1812.01187].

Here, we set the weight decay coefficient in all normalization layers (head.bn) in ToyModel to 0 as follows.

from mmengine.optim import build_optim_wrapper
from collections import OrderedDict

class ToyModel(nn.Module):
 def __init__(self):
 super().__init__()
 self.backbone = nn.ModuleDict(
 dict(layer0=nn.Linear(1, 1), layer1=nn.Linear(1, 1)))
 self.head = nn.Sequential(
 OrderedDict(
 linear=nn.Linear(1, 1),
 bn=nn.BatchNorm1d(1)))

optim_wrapper = dict(
 optimizer=dict(type='SGD', lr=0.01, weight_decay=0.0001),
 paramwise_cfg=dict(norm_decay_mult=0))
optimizer = build_optim_wrapper(ToyModel(), optim_wrapper)

08/23 22:02:43 - mmengine - INFO - paramwise_options -- backbone.layer0.bias:lr=0.01
08/23 22:02:43 - mmengine - INFO - paramwise_options -- backbone.layer0.bias:weight_decay=0.0001
08/23 22:02:43 - mmengine - INFO - paramwise_options -- backbone.layer1.bias:lr=0.01
08/23 22:02:43 - mmengine - INFO - paramwise_options -- backbone.layer1.bias:weight_decay=0.0001
08/23 22:02:43 - mmengine - INFO - paramwise_options -- head.linear.bias:lr=0.01
08/23 22:02:43 - mmengine - INFO - paramwise_options -- head.linear.bias:weight_decay=0.0001
08/23 22:02:43 - mmengine - INFO - paramwise_options -- head.bn.weight:weight_decay=0.0
08/23 22:02:43 - mmengine - INFO - paramwise_options -- head.bn.bias:weight_decay=0.0

In addition to configuring the weight decay, paramwise_cfg of MMEngine’s default optimizer wrapper constructor supports the following hyperparameters as well.

lr_mult: Learning rate for all parameters.

decay_mult: Decay coefficient for all parameters.

bias_lr_mult: Learning rate coefficient of the bias (excluding bias of normalization layer and offset of the deformable convolution).

bias_decay_mult: Weight decay coefficient of the bias (excluding bias of normalization layer and offset of the deformable convolution).

norm_decay_mult: Weight decay coefficient for weights and bias of the normalization layer.

flat_decay_mult: Weight decay coefficient of the one-dimension parameters.

dwconv_decay_mult: Decay coefficient of the depth-wise convolution.

bypass_duplicate: Whether to skip duplicate parameters, default to False.

dcn_offset_lr_mult: Learning rate of the deformable convolution.

Set different hyperparamters for different model modules

In addition, as shown in the PyTorch code above, in MMEngine we can also set different hyperparameters for any module in the model by setting custom_keys in paramwise_cfg.

If we want to set the learning rate and the decay coefficient to 0 for backbone.layer0, and set the learning rate to 0.001 for the rest of the modules in the backbone. At the same time, we want to keep all the learning rate to 0.001 for the head module. We can do it in this way:

optim_wrapper = dict(
 optimizer=dict(type='SGD', lr=0.01, weight_decay=0.0001),
 paramwise_cfg=dict(
 custom_keys={
 'backbone.layer0': dict(lr_mult=0, decay_mult=0),
 'backbone': dict(lr_mult=1),
 'head': dict(lr_mult=0.1)
 }))
optimizer = build_optim_wrapper(ToyModel(), optim_wrapper)

08/23 22:02:43 - mmengine - INFO - paramwise_options -- backbone.layer0.weight:lr=0.0
08/23 22:02:43 - mmengine - INFO - paramwise_options -- backbone.layer0.weight:weight_decay=0.0
08/23 22:02:43 - mmengine - INFO - paramwise_options -- backbone.layer0.weight:lr_mult=0
08/23 22:02:43 - mmengine - INFO - paramwise_options -- backbone.layer0.weight:decay_mult=0
08/23 22:02:43 - mmengine - INFO - paramwise_options -- backbone.layer0.bias:lr=0.0
08/23 22:02:43 - mmengine - INFO - paramwise_options -- backbone.layer0.bias:weight_decay=0.0
08/23 22:02:43 - mmengine - INFO - paramwise_options -- backbone.layer0.bias:lr_mult=0
08/23 22:02:43 - mmengine - INFO - paramwise_options -- backbone.layer0.bias:decay_mult=0
08/23 22:02:43 - mmengine - INFO - paramwise_options -- backbone.layer1.weight:lr=0.01
08/23 22:02:43 - mmengine - INFO - paramwise_options -- backbone.layer1.weight:weight_decay=0.0001
08/23 22:02:43 - mmengine - INFO - paramwise_options -- backbone.layer1.weight:lr_mult=1
08/23 22:02:43 - mmengine - INFO - paramwise_options -- backbone.layer1.bias:lr=0.01
08/23 22:02:43 - mmengine - INFO - paramwise_options -- backbone.layer1.bias:weight_decay=0.0001
08/23 22:02:43 - mmengine - INFO - paramwise_options -- backbone.layer1.bias:lr_mult=1
08/23 22:02:43 - mmengine - INFO - paramwise_options -- head.linear.weight:lr=0.001
08/23 22:02:43 - mmengine - INFO - paramwise_options -- head.linear.weight:weight_decay=0.0001
08/23 22:02:43 - mmengine - INFO - paramwise_options -- head.linear.weight:lr_mult=0.1
08/23 22:02:43 - mmengine - INFO - paramwise_options -- head.linear.bias:lr=0.001
08/23 22:02:43 - mmengine - INFO - paramwise_options -- head.linear.bias:weight_decay=0.0001
08/23 22:02:43 - mmengine - INFO - paramwise_options -- head.linear.bias:lr_mult=0.1
08/23 22:02:43 - mmengine - INFO - paramwise_options -- head.bn.weight:lr=0.001
08/23 22:02:43 - mmengine - INFO - paramwise_options -- head.bn.weight:weight_decay=0.0001
08/23 22:02:43 - mmengine - INFO - paramwise_options -- head.bn.weight:lr_mult=0.1
08/23 22:02:43 - mmengine - INFO - paramwise_options -- head.bn.bias:lr=0.001
08/23 22:02:43 - mmengine - INFO - paramwise_options -- head.bn.bias:weight_decay=0.0001
08/23 22:02:43 - mmengine - INFO - paramwise_options -- head.bn.bias:lr_mult=0.1

The state dictionary of the above model can be printed as the following:

for name, val in ToyModel().named_parameters():
 print(name)

backbone.layer0.weight
backbone.layer0.bias
backbone.layer1.weight
backbone.layer1.bias
head.linear.weight
head.linear.bias
head.bn.weight
head.bn.bias

Each field in custom_keys is defined as follows.

	'backbone': dict(lr_mult=1): Set the learning rate of the parameter whose name is prefixed with backbone to 1.

	'backbone.layer0': dict(lr_mult=0, decay_mult=0): Set the learning rate of the parameter with the prefix backbone.layer0 to 0 and the decay coefficient to 0. This configuration has a higher priority than the first one.

	'head': dict(lr_mult=0.1): Set the learning rate of the parameter whose name is prefixed with head to 0.1.

Customize optimizer construction policies

Like other modules in MMEngine, the optimizer wrapper constructor is also managed by the registry. We can customize the hyperparameter policies by implementing custom optimizer wrapper constructors.

For example, we can implement an optimizer wrapper constructor called LayerDecayOptimWrapperConstructor that automatically set decreasing learning rates for layers of different depths of the model.

from mmengine.optim import DefaultOptimWrapperConstructor
from mmengine.registry import OPTIM_WRAPPER_CONSTRUCTORS
from mmengine.logging import print_log

@OPTIM_WRAPPER_CONSTRUCTORS.register_module(force=True)
class LayerDecayOptimWrapperConstructor(DefaultOptimWrapperConstructor):

 def __init__(self, optim_wrapper_cfg, paramwise_cfg=None):
 super().__init__(optim_wrapper_cfg, paramwise_cfg=None)
 self.decay_factor = paramwise_cfg.get('decay_factor', 0.5)

 super().__init__(optim_wrapper_cfg, paramwise_cfg)

 def add_params(self, params, module, prefix='' ,lr=None):
 if lr is None:
 lr = self.base_lr

 for name, param in module.named_parameters(recurse=False):
 param_group = dict()
 param_group['params'] = [param]
 param_group['lr'] = lr
 params.append(param_group)
 full_name = f'{prefix}.{name}' if prefix else name
 print_log(f'{full_name} : lr={lr}', logger='current')

 for name, module in module.named_children():
 chiled_prefix = f'{prefix}.{name}' if prefix else name
 self.add_params(
 params, module, chiled_prefix, lr=lr * self.decay_factor)

class ToyModel(nn.Module):

 def __init__(self) -> None:
 super().__init__()
 self.layer = nn.ModuleDict(dict(linear=nn.Linear(1, 1)))
 self.linear = nn.Linear(1, 1)

model = ToyModel()

optim_wrapper = dict(
 optimizer=dict(type='SGD', lr=0.01, weight_decay=0.0001),
 paramwise_cfg=dict(decay_factor=0.5),
 constructor='LayerDecayOptimWrapperConstructor')

optimizer = build_optim_wrapper(model, optim_wrapper)

08/23 22:20:26 - mmengine - INFO - layer.linear.weight : lr=0.0025
08/23 22:20:26 - mmengine - INFO - layer.linear.bias : lr=0.0025
08/23 22:20:26 - mmengine - INFO - linear.weight : lr=0.005
08/23 22:20:26 - mmengine - INFO - linear.bias : lr=0.005

When add_params is called for the first time, the params argument is an empty list and the module is the ToyModel instance. Please refer to the Optimizer Wrapper Constructor Documentation for detailed explanations on overloading.

Similarly, if we want to construct multiple optimizers, we also need to implement a custom constructor.

@OPTIM_WRAPPER_CONSTRUCTORS.register_module()
class MultipleOptimiWrapperConstructor:
 ...

Adjust hyperparameters during training

The hyperparameters in the optimizer can only be set to a fixed value at the time it is constructed, and you cannot adjust parameters such as the learning rate during training by just using the optimizer wrapper. In MMEngine, we have implemented a parameter scheduler that allows the tuning of parameters during training. For the usage of the parameter scheduler, please refer to the Parameter Scheduler

 Parameter Scheduler

Parameter Scheduler

During neural network training, optimization hyperparameters (e.g. learning rate) are usually adjusted along with the training process.
One of the simplest and most common learning rate adjustment strategies is multi-step learning rate decay, which reduces the learning rate to a fraction at regular intervals.
PyTorch provides LRScheduler to implement various learning rate adjustment strategies. In MMEngine, we have extended it and implemented a more general ParamScheduler.
It can adjust optimization hyperparameters such as learning rate and momentum. It also supports the combination of multiple schedulers to create more complex scheduling strategies.

Usage

We first introduce how to use PyTorch’s torch.optim.lr_scheduler to adjust learning rate.

How to use PyTorch's builtin learning rate scheduler?
Here is an example which refers from PyTorch official documentation [https://pytorch.org/docs/stable/optim.html]:

Initialize an ExponentialLR object, and call the step method after each training epoch.

import torch
from torch.optim import SGD
from torch.optim.lr_scheduler import ExponentialLR

model = torch.nn.Linear(1, 1)
dataset = [torch.randn((1, 1, 1)) for _ in range(20)]
optimizer = SGD(model, 0.1)
scheduler = ExponentialLR(optimizer, gamma=0.9)

for epoch in range(10):
 for data in dataset:
 optimizer.zero_grad()
 output = model(data)
 loss = 1 - output
 loss.backward()
 optimizer.step()
 scheduler.step()

mmengine.optim.scheduler supports most of PyTorch’s learning rate schedulers such as ExponentialLR, LinearLR, StepLR, MultiStepLR, etc. Please refer to parameter scheduler API documentation [https://mmengine.readthedocs.io/en/latest/api/optim.html#scheduler] for all of the supported schedulers.

MMEngine also supports adjusting momentum with parameter schedulers. To use momentum schedulers, replace LR in the class name to Momentum, such as ExponentialMomentum，LinearMomentum. Further, we implement the general parameter scheduler ParamScheduler, which is used to adjust the specified hyperparameters in the optimizer, such as weight_decay, etc. This feature makes it easier to apply some complex hyperparameter tuning strategies.

Different from the above example, MMEngine usually does not need to manually implement the training loop and call optimizer.step(). The runner will automatically manage the training progress and control the execution of the parameter scheduler through ParamSchedulerHook.

Use a single LRScheduler

If only one scheduler needs to be used for the entire training process, there is no difference with PyTorch’s learning rate scheduler.

build the scheduler manually
from torch.optim import SGD
from mmengine.runner import Runner
from mmengine.optim.scheduler import MultiStepLR

optimizer = SGD(model.parameters(), lr=0.01, momentum=0.9)
param_scheduler = MultiStepLR(optimizer, milestones=[8, 11], gamma=0.1)

runner = Runner(
 model=model,
 optim_wrapper=dict(
 optimizer=optimizer),
 param_scheduler=param_scheduler,
 ...
)

[image: image]

If using the runner with the registry and config file, we can specify the scheduler by setting the param_scheduler field in the config. The runner will automatically build a parameter scheduler based on this field:

build the scheduler with config file
param_scheduler = dict(type='MultiStepLR', by_epoch=True, milestones=[8, 11], gamma=0.1)

Note that the parameter by_epoch is added here, which controls the frequency of learning rate adjustment. When set to True, it means adjusting by epoch. When set to False, it means adjusting by iteration. The default value is True.

In the above example, it means to adjust according to epochs. At this time, the unit of the parameters is epoch. For example, [8, 11] in milestones means that the learning rate will be multiplied by 0.1 at the end of the 8 and 11 epoch.

When the frequency is modified, the meaning of the count-related settings of the scheduler will be changed accordingly. When by_epoch=True, the numbers in milestones indicate at which epoch the learning rate decay is performed, and when by_epoch=False it indicates at which iteration the learning rate decay is performed.

Here is an example of adjusting by iterations: At the end of the 600th and 800th iterations, the learning rate will be multiplied by 0.1 times.

param_scheduler = dict(type='MultiStepLR', by_epoch=False, milestones=[600, 800], gamma=0.1)

[image: image]

If users want to use the iteration-based frequency while filling the scheduler config settings by epoch, MMEngine’s scheduler also provides an automatic conversion method. Users can call the build_iter_from_epoch method and provide the number of iterations for each training epoch to construct a scheduler object updated by iterations:

epoch_length = len(train_dataloader)
param_scheduler = MultiStepLR.build_iter_from_epoch(optimizer, milestones=[8, 11], gamma=0.1, epoch_length=epoch_length)

If using config to build a scheduler, just add convert_to_iter_based=True to the field. The runner will automatically call build_iter_from_epoch to convert the epoch-based config to an iteration-based scheduler object:

param_scheduler = dict(type='MultiStepLR', by_epoch=True, milestones=[8, 11], gamma=0.1, convert_to_iter_based=True)

Below is a Cosine Annealing learning rate scheduler that is updated by epoch, where the learning rate is only modified after each epoch:

param_scheduler = dict(type='CosineAnnealingLR', by_epoch=True, T_max=12)

[image: image]

After automatically conversion, the learning rate is updated by iteration. As you can see from the graph below, the learning rate changes more smoothly.

param_scheduler = dict(type='CosineAnnealingLR', by_epoch=True, T_max=12, convert_to_iter_based=True)

[image: image]

Combine multiple LRSchedulers (e.g. learning rate warm-up)

In the training process of some algorithms, the learning rate is not adjusted according to a certain scheduling strategy from beginning to end. The most common example is learning rate warm-up.

For example, in the first few iterations, a linear strategy is used to increase the learning rate from a small value to normal, and then another strategy is applied.

MMEngine supports combining multiple schedulers together. Just modify the param_scheduler field in the config file to a list of scheduler config, and the ParamSchedulerHook can automatically process the scheduler list. The following example implements learning rate warm-up.

param_scheduler = [
 # Linear learning rate warm-up scheduler
 dict(type='LinearLR',
 start_factor=0.001,
 by_epoch=False, # Updated by iterations
 begin=0,
 end=50), # Warm up for the first 50 iterations
 # The main LRScheduler
 dict(type='MultiStepLR',
 by_epoch=True, # Updated by epochs
 milestones=[8, 11],
 gamma=0.1)
]

[image: image]

Note that the begin and end parameters are added here. These two parameters specify the valid interval of the scheduler. The valid interval usually only needs to be set when multiple schedulers are combined, and can be ignored when using a single scheduler. When the begin and end parameters are specified, it means that the scheduler only takes effect in the [begin, end) interval, and the unit is determined by the by_epoch parameter.

In the above example, the by_epoch of LinearLR in the warm-up phase is False, which means that the scheduler only takes effect in the first 50 iterations. After more than 50 iterations, the scheduler will no longer take effect, and the second scheduler, which is MultiStepLR, will control the learning rate. When combining different schedulers, the by_epoch parameter does not have to be the same for each scheduler.

Here is another example:

param_scheduler = [
 # Use a linear warm-up at [0, 100) iterations
 dict(type='LinearLR',
 start_factor=0.001,
 by_epoch=False,
 begin=0,
 end=100),
 # Use a cosine learning rate at [100, 900) iterations
 dict(type='CosineAnnealingLR',
 T_max=800,
 by_epoch=False,
 begin=100,
 end=900)
]

[image: image]

The above example uses a linear learning rate warm-up for the first 100 iterations, and then uses a cosine annealing learning rate scheduler with a period of 800 from the 100th to the 900th iteration.

Users can combine any number of schedulers. If the valid intervals of two schedulers are not connected to each other which leads to an interval that is not covered, the learning rate of this interval remains unchanged. If the valid intervals of the two schedulers overlap, the adjustment of the learning rate will be triggered in the order of the scheduler config (similar with ChainedScheduler [https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ChainedScheduler.html#chainedscheduler]).

We recommend using different learning rate scheduling strategies in different stages of training to avoid overlapping of the valid intervals. Be careful If you really need to stack two schedulers overlapped. We recommend using learning rate visualization tool to visualize the learning rate after stacking, to avoid the adjustment not as expected.

How to adjust other hyperparameters

Momentum

Like learning rate, momentum is a schedulable hyperparameter in the optimizer’s parameter group. The momentum scheduler is used in exactly the same way as the learning rate scheduler. Just add the momentum scheduler config to the list in the param_scheduler field.

Example:

param_scheduler = [
 # the lr scheduler
 dict(type='LinearLR', ...),
 # the momentum scheduler
 dict(type='LinearMomentum',
 start_factor=0.001,
 by_epoch=False,
 begin=0,
 end=1000)
]

Generic parameter scheduler

MMEngine also provides a set of generic parameter schedulers for scheduling other hyperparameters in the param_groups of the optimizer. Change LR in the class name of the learning rate scheduler to Param, such as LinearParamScheduler. Users can schedule the specific hyperparameters by setting the param_name variable of the scheduler.

Here is an example:

param_scheduler = [
 dict(type='LinearParamScheduler',
 param_name='lr', # adjust the 'lr' in `optimizer.param_groups`
 start_factor=0.001,
 by_epoch=False,
 begin=0,
 end=1000)
]

By setting the param_name to 'lr', this parameter scheduler is equivalent to LinearLRScheduler.

In addition to learning rate and momentum, users can also schedule other parameters in optimizer.param_groups. The schedulable parameters depend on the optimizer used. For example, when using the SGD optimizer with weight_decay, the weight_decay can be adjusted as follows:

param_scheduler = [
 dict(type='LinearParamScheduler',
 param_name='weight_decay', # adjust 'weight_decay' in `optimizer.param_groups`
 start_factor=0.001,
 by_epoch=False,
 begin=0,
 end=1000)
]

 Hook

Hook

Hook programming is a programming pattern in which a mount point is set in one or more locations of a program. When the program runs to a mount point, all methods registered to it at runtime are automatically called. Hook programming can increase the flexibility and extensibility of the program, since users can register custom methods to the mount point to be called without modifying the code in the program.

Built-in Hooks

MMEngine encapsules many ultilities as built-in hooks. These hooks are divided into two categories, namely default hooks and custom hooks. The former refers to those registered with the Runner by default, while the latter refers to those registered by the user on demand.

Each hook has a corresponding priority. At each mount point, hooks with higher priority are called earlier by the Runner. When sharing the same priority, the hooks are called in their registration order. The priority list is as follows.

	HIGHEST (0)

	VERY_HIGH (10)

	HIGH (30)

	ABOVE_NORMAL (40)

	NORMAL (50)

	BELOW_NORMAL (60)

	LOW (70)

	VERY_LOW (90)

	LOWEST (100)

default hooks

	Name

	Function

	Priority

	RuntimeInfoHook

	update runtime information into message hub

	VERY_HIGH (10)

	IterTimerHook

	Update the time spent during iteration into message hub

	NORMAL (50)

	DistSamplerSeedHook

	Ensure distributed Sampler shuffle is active

	NORMAL (50)

	LoggerHook

	Collect logs from different components of Runner and write them to terminal, JSON file, tensorboard and wandb .etc

	BELOW_NORMAL (60)

	ParamSchedulerHook

	update some hyper-parameters of optimizer

	LOW (70)

	CheckpointHook

	Save checkpoints periodically

	VERY_LOW (90)

custom hooks

	Name

	Function

	Priority

	EMAHook

	apply Exponential Moving Average (EMA) on the model during training

	NORMAL (50)

	EmptyCacheHook

	Releases all unoccupied cached GPU memory during the process of training

	NORMAL (50)

	SyncBuffersHook

	Synchronize model buffers at the end of each epoch

	NORMAL (50)

Note

It is not recommended to modify the priority of the default hooks, as hooks with lower priority may depend on hooks with higher priority. For example, CheckpointHook needs to have a lower priority than ParamSchedulerHook so that the saved optimizer state is correct. Also, the priority of custom hooks defaults to NORMAL (50).

The two types of hooks are set differently in the Runner, with the configuration of default hooks being passed to the default_hooks parameter of the Runner and the configuration of custom hooks being passed to the custom_hooks parameter, as follows.

from mmengine.runner import Runner
default_hooks = dict(
 runtime_info=dict(type='RuntimeInfoHook'),
 timer=dict(type='IterTimerHook'),
 sampler_seed=dict(type='DistSamplerSeedHook'),
 logger=dict(type='LoggerHook'),
 param_scheduler=dict(type='ParamSchedulerHook'),
 checkpoint=dict(type='CheckpointHook', interval=1),
)
custom_hooks = [dict(type='EmptyCacheHook')]
runner = Runner(default_hooks=default_hooks, custom_hooks=custom_hooks, ...)
runner.train()

LoggerHook

LoggerHook collects logs from different components of Runner and write them to terminal, JSON file, tensorboard and wandb, etc.

CheckpointHook

CheckpointHook saves the checkpoints at a given interval. In the case of distributed training, only the master process will save the checkpoints. The main features of CheckpointHook is as follows.

	Save checkpoints by interval, and support saving them by epoch or iteration

	Save the most recent checkpoints

	Save the best checkpoints

	Specify the path to save the checkpoints

	Make checkpoints for publish

	Control the epoch number or iteration number at which checkpoint saving begins

For more features, please read the CheckpointHook API documentation.

The six features mentioned above are described below.

	Save checkpoints by interval, and support saving them by epoch or iteration

Suppose we train a total of 20 epochs and want to save the checkpoints every 5 epochs, the following configuration will help us achieve this requirement.

the default value of by_epoch is True
default_hooks = dict(checkpoint=dict(type='CheckpointHook', interval=5, by_epoch=True))

If you want to save checkpoints by iteration, you can set by_epoch to False and interval=5 to save them every 5 iterations.

default_hooks = dict(checkpoint=dict(type='CheckpointHook', interval=5, by_epoch=False))

	Save the most recent checkpoints

If you only want to keep a certain number of checkpoints, you can set the max_keep_ckpts parameter. When the number of checkpoints saved exceeds max_keep_ckpts, the previous checkpoints will be deleted.

default_hooks = dict(checkpoint=dict(type='CheckpointHook', interval=5, max_keep_ckpts=2))

The above config shows that if a total of 20 epochs are trained, the model will be saved at epochs 5, 10, 15, and 20, but the checkpoint epoch_5.pth will be deleted at epoch 15, and at epoch 20 the checkpoint epoch_10.pth will be deleted, so that only the epoch_15.pth and epoch_20.pth will be saved.

	Save the best checkpoints

If you want to save the best checkpoints of the validation set for the training process, you can set the save_best parameter. If set to 'auto', the current checkpoint are judged to be best based on the first evaluation metric of the validation set (the evaluation metrics returned by evaluator are an ordered dictionary).

default_hooks = dict(checkpoint=dict(type='CheckpointHook', save_best='auto'))

You can also directly specify the value of save_best as the evaluation metric, for example, in a classification task, you can specify save_best='top-1', then the current checkpoint will be judged as best based on the value of 'top-1'.

In addition to the save_best parameter, other parameters related to saving the best checkpoint are rule, greater_keys and less_keys, which are used to imply whether its good to have large value or not. For example, if you specify save_best='top-1', you can specify rule='greater' to imply that the larger the value, the better the checkpoint.

	Specify the path to save the checkpoints

The checkpoints are saved in work_dir by default, but the path can be changed by setting out_dir.

default_hooks = dict(checkpoint=dict(type='CheckpointHook', interval=5, out_dir='/path/of/directory'))

	Make checkpoints for publish

If you want to automatically generate publishable checkpoints after training (remove unnecessary keys, such as optimizer state), you can set the published_keys parameter to choose which information to keep. Note: You need to set the save_best or save_last parameters accordingly so that the releasable checkpoints will be generated. Setting save_best will generate the releasable weights of the optimal checkpoint, and setting save_last will generate the releasable final checkpoint. These two parameters can also be set at the same time.

default_hooks = dict(checkpoint=dict(type='CheckpointHook', interval=1, save_best='accuracy', rule='less', published_keys=['meta', 'state_dict']))

	Control the epoch number or iteration number at which checkpoint saving begins

If you want to set the number of epochs or iterations to control the start of saving weights, you can set the save_begin parameter, defaults to 0, which means saving checkpoints from the beginning of training. For example, if you train for a total of 10 epochs, and save_begin is set to 5, then the checkpoints for epochs 5, 6, 7, 8, 9, and 10 will be saved. If interval=2, only save checkpoints for epochs 5, 7 and 9.

default_hooks = dict(checkpoint=dict(type='CheckpointHook', interval=2, save_begin=5))

LoggerHook collects logs from different components of Runner and write them to terminal, JSON file, tensorboard and wandb .etc.

If we want to output (or save) the logs every 20 iterations, we can set the interval parameter and configure it as follows.

default_hooks = dict(logger=dict(type='LoggerHook', interval=20))

If you are interested in how MMEngine manages logging, you can refer to logging.

ParamSchedulerHook

ParamSchedulerHook iterates through all optimizer parameter schedulers of the Runner and calls their step method to update the optimizer parameters in order. See Parameter Schedulers for more details about what are parameter schedulers.

ParamSchedulerHook is registered to the Runner by default and has no configurable parameters, so there is no need to configure it.

IterTimerHook

IterTimerHook is used to record the time taken to load data and iterate once.

IterTimerHook is registered to the Runner by default and has no configurable parameters, so there is no need to configure it.

DistSamplerSeedHook

DistSamplerSeedHook calls the step method of the Sampler during distributed training to ensure that the shuffle operation takes effect.

DistSamplerSeedHook is registered to the Runner by default and has no configurable parameters, so there is no need to configure it.

RuntimeInfoHook

RuntimeInfoHook will update the current runtime information (e.g. epoch, iter, max_epochs, max_iters, lr, metrics, etc.) to the message hub at different mount points in the Runner so that other modules without access to the Runner can obtain this information.

RuntimeInfoHook is registered to the Runner by default and has no configurable parameters, so there is no need to configure it.

EMAHook

EMAHook performs an exponential moving average operation on the model during training, with the aim of improving the robustness of the model. Note that the model generated by exponential moving average is only used for validation and testing, and does not affect training.

custom_hooks = [dict(type='EMAHook')]
runner = Runner(custom_hooks=custom_hooks, ...)
runner.train()

EMAHook uses ExponentialMovingAverage by default, with optional values of StochasticWeightAverage and MomentumAnnealingEMA. Other averaging strategies can be used by setting ema_type.

custom_hooks = [dict(type='EMAHook', ema_type='StochasticWeightAverage')]

See EMAHook API Reference for more usage.

EmptyCacheHook

EmptyCacheHook calls torch.cuda.empty_cache() to release all unoccupied cached GPU memory. The timing of releasing memory can be controlled by setting parameters like before_epoch, after_iter, and after_epoch, meaning before the start of each epoch, after each iteration, and after each epoch respectively.

The release operation is performed at the end of each epoch
custom_hooks = [dict(type='EmptyCacheHook', after_epoch=True)]
runner = Runner(custom_hooks=custom_hooks, ...)
runner.train()

SyncBuffersHook

SyncBuffersHook synchronizes the buffer of the model at the end of each epoch during distributed training, e.g. running_mean and running_var of the BN layer.

custom_hooks = [dict(type='SyncBuffersHook')]
runner = Runner(custom_hooks=custom_hooks, ...)
runner.train()

Customize Your Hooks

If the built-in hooks provided by MMEngine do not cover your demands, you are encouraged to customize your own hooks by simply inheriting the base hook class and overriding the corresponding mount point methods.

For example, if you want to check whether the loss value is valid, i.e. not infinite, during training, you can simply override the after_train_iter method as below. The check will be performed after each training iteration.

import torch
from mmengine.registry import HOOKS
from mmengine.hooks import Hook
@HOOKS.register_module()
class CheckInvalidLossHook(Hook):
 """Check invalid loss hook.
 This hook will regularly check whether the loss is valid
 during training.
 Args:
 interval (int): Checking interval (every k iterations).
 Defaults to 50.
 """
 def __init__(self, interval=50):
 self.interval = interval
 def after_train_iter(self, runner, batch_idx, data_batch=None, outputs=None):
 """All subclasses should override this method, if they need any
 operations after each training iteration.
 Args:
 runner (Runner): The runner of the training process.
 batch_idx (int): The index of the current batch in the train loop.
 data_batch (dict or tuple or list, optional): Data from dataloader.
 outputs (dict, optional): Outputs from model.
 """
 if self.every_n_train_iters(runner, self.interval):
 assert torch.isfinite(outputs['loss']),\
 runner.logger.info('loss become infinite or NaN!')

We simply pass the hook config to the custom_hooks parameter of the Runner, which will register the hooks when the Runner is initialized.

from mmengine.runner import Runner
custom_hooks = [
 dict(type='CheckInvalidLossHook', interval=50)
]
runner = Runner(custom_hooks=custom_hooks, ...)
runner.train() # start training

Then the loss value are checked after iteration.

Note that the priority of the custom hook is NORMAL (50) by default, if you want to change the priority of the hook, then you can set the priority key in the config.

custom_hooks = [
 dict(type='CheckInvalidLossHook', interval=50, priority='ABOVE_NORMAL')
]

You can also set priority when defining classes.

@HOOKS.register_module()
class CheckInvalidLossHook(Hook):
 priority = 'ABOVE_NORMAL'

 Registry

Registry

OpenMMLab supports a rich collection of algorithms and datasets, therefore, many modules with similar functionality are implemented. For example, the implementations of ResNet and SE-ResNet are based on the classes ResNet and SEResNet, respectively, which have similar functions and interfaces and belong to the model components of the algorithm library. To manage these functionally similar modules, MMEngine implements the registry. Most of the algorithm libraries in OpenMMLab use registry to manage their modules, including MMDetection [https://github.com/open-mmlab/mmdetection], MMDetection3D [https://github.com/open-mmlab/mmdetection3d], MMPretrain [https://github.com/open-mmlab/mmpretrain] and MMagic [https://github.com/open-mmlab/MMagic], etc.

What is a registry

The registry in MMEngine can be considered as a union of a mapping table and a build function of modules. The mapping table maintains a mapping from strings to classes or functions, allowing the user to find the corresponding class or function with its name/notation. For example, the mapping from the string "ResNet" to the ResNet class. The module build function defines how to find the corresponding class or function based on a string and how to instantiate the class or call the function. For example, finding nn.BatchNorm2d and instantiating the BatchNorm2d module by the string "bn", or finding the build_batchnorm2d function by the string "build_batchnorm2d" and then returning the result. The registries in MMEngine use the build_from_cfg function by default to find and instantiate the class or function corresponding to the string.

The classes or functions managed by a registry usually have similar interfaces and functionality, so the registry can be treated as an abstraction of those classes or functions. For example, the registry MODELS can be treated as an abstraction of all models, which manages classes such as ResNet, SEResNet and RegNetX and constructors such as build_ResNet, build_SEResNet and build_RegNetX.

Getting started

There are three steps required to use the registry to manage modules in the codebase.

	Create a registry.

	Create a build method for instantiating the class (optional because in most cases you can just use the default method).

	Add the module to the registry

Suppose we want to implement a series of activation modules and want to be able to switch to different modules by just modifying the configuration without modifying the code.

Let’s create a registry first.

from mmengine import Registry
`scope` represents the domain of the registry. If not set, the default value is the package name.
e.g. in mmdetection, the scope is mmdet
`locations` indicates the location where the modules in this registry are defined.
The Registry will automatically import the modules when building them according to these predefined locations.
ACTIVATION = Registry('activation', scope='mmengine', locations=['mmengine.models.activations'])

The module mmengine.models.activations specified by locations corresponds to the mmengine/models/activations.py file. When building modules with registry, the ACTIVATION registry will automatically import implemented modules from this file. Therefore, we can implement different activation layers in the mmengine/models/activations.py file, such as Sigmoid, ReLU, and Softmax.

import torch.nn as nn

use the register_module
@ACTIVATION.register_module()
class Sigmoid(nn.Module):
 def __init__(self):
 super().__init__()

 def forward(self, x):
 print('call Sigmoid.forward')
 return x

@ACTIVATION.register_module()
class ReLU(nn.Module):
 def __init__(self, inplace=False):
 super().__init__()

 def forward(self, x):
 print('call ReLU.forward')
 return x

@ACTIVATION.register_module()
class Softmax(nn.Module):
 def __init__(self):
 super().__init__()

 def forward(self, x):
 print('call Softmax.forward')
 return x

The key of using the registry module is to register the implemented modules into the ACTIVATION registry. With the @ACTIVATION.register_module() decorator added before the implemented module, the mapping between strings and classes or functions can be built and maintained by ACTIVATION. We can achieve the same functionality with ACTIVATION.register_module(module=ReLU) as well.

By registering, we can create a mapping between strings and classes or functions via ACTIVATION.

print(ACTIVATION.module_dict)
{
'Sigmoid': __main__.Sigmoid,
'ReLU': __main__.ReLU,
'Softmax': __main__.Softmax
}

Note

The key to trigger the registry mechanism is to make the module imported.
There are three ways to register a module into the registry

	Implement the module in the locations. The registry will automatically import modules in the predefined locations. This is to ease the usage of algorithm libraries so that users can directly use REGISTRY.build(cfg).

	Import the file manually. This is common when developers implement a new module in/out side the algorithm library.

	Use custom_imports field in config. Please refer to Importing custom Python modules for more details.

Once the implemented module is successfully registered, we can use the activation module in the configuration file.

import torch

input = torch.randn(2)

act_cfg = dict(type='Sigmoid')
activation = ACTIVATION.build(act_cfg)
output = activation(input)
call Sigmoid.forward
print(output)

We can switch to ReLU by just changing this configuration.

act_cfg = dict(type='ReLU', inplace=True)
activation = ACTIVATION.build(act_cfg)
output = activation(input)
call ReLU.forward
print(output)

If we want to check the type of input parameters (or any other operations) before creating an instance, we can implement a build method and pass it to the registry to implement a custom build process.

Create a build_activation function.

def build_activation(cfg, registry, *args, **kwargs):
 cfg_ = cfg.copy()
 act_type = cfg_.pop('type')
 print(f'build activation: {act_type}')
 act_cls = registry.get(act_type)
 act = act_cls(*args, **kwargs, **cfg_)
 return act

Pass the buid_activation to build_func.

ACTIVATION = Registry('activation', build_func=build_activation, scope='mmengine', locations=['mmengine.models.activations'])

@ACTIVATION.register_module()
class Tanh(nn.Module):
 def __init__(self):
 super().__init__()

 def forward(self, x):
 print('call Tanh.forward')
 return x

act_cfg = dict(type='Tanh')
activation = ACTIVATION.build(act_cfg)
output = activation(input)
build activation: Tanh
call Tanh.forward
print(output)

Note

In the above example, we demonstrate how to customize the method of building an instance of a class using the build_func.
This is similar to the default build_from_cfg method. In most cases, using the default method will be fine.

MMEngine’s registry can register classes as well as functions.

FUNCTION = Registry('function', scope='mmengine')

@FUNCTION.register_module()
def print_args(**kwargs):
 print(kwargs)

func_cfg = dict(type='print_args', a=1, b=2)
func_res = FUNCTION.build(func_cfg)

Advanced usage

The registry in MMEngine supports hierarchical registration, which enables cross-project calls, meaning that modules from one project can be used in another project. Though there are other ways to implement this, the registry provides a much easier solution.

To easily make cross-library calls, MMEngine provides twenty two root registries, including:

	RUNNERS: the registry for Runner.

	RUNNER_CONSTRUCTORS: the constructors for Runner.

	LOOPS: manages training, validation and testing processes, such as EpochBasedTrainLoop.

	HOOKS: the hooks, such as CheckpointHook, and ParamSchedulerHook.

	DATASETS: the datasets.

	DATA_SAMPLERS: Sampler of DataLoader, used to sample the data.

	TRANSFORMS: various data preprocessing methods, such as Resize, and Reshape.

	MODELS: various modules of the model.

	MODEL_WRAPPERS: model wrappers for parallelizing distributed data, such as MMDistributedDataParallel.

	WEIGHT_INITIALIZERS: the tools for weight initialization.

	OPTIMIZERS: registers all Optimizers and custom Optimizers in PyTorch.

	OPTIM_WRAPPER: the wrapper for Optimizer-related operations such as OptimWrapper, and AmpOptimWrapper.

	OPTIM_WRAPPER_CONSTRUCTORS: the constructors for optimizer wrappers.

	PARAM_SCHEDULERS: various parameter schedulers, such as MultiStepLR.

	METRICS: the evaluation metrics for computing model accuracy, such as Accuracy.

	EVALUATOR: one or more evaluation metrics used to calculate the model accuracy.

	TASK_UTILS: the task-intensive components, such as AnchorGenerator, and BboxCoder.

	VISUALIZERS: the management drawing module that draws prediction boxes on images, such as DetVisualizer.

	VISBACKENDS: the backend for storing training logs, such as LocalVisBackend, and TensorboardVisBackend.

	LOG_PROCESSORS: controls the log statistics window and statistics methods, by default we use LogProcessor. You may customize LogProcessor if you have special needs.

	FUNCTIONS: registers various functions, such as collate_fn in DataLoader.

	INFERENCERS: registers inferencers of different tasks, such as DetInferencer, which is used to perform inference on the detection task.

Use the module of the parent node

Let’s define a RReLU module in MMEngine and register it to the MODELS root registry.

import torch.nn as nn
from mmengine import Registry, MODELS

@MODELS.register_module()
class RReLU(nn.Module):
 def __init__(self, lower=0.125, upper=0.333, inplace=False):
 super().__init__()

 def forward(self, x):
 print('call RReLU.forward')
 return x

Now suppose there is a project called MMAlpha, which also defines a MODELS and sets its parent node to the MODELS of MMEngine, which creates a hierarchical structure.

from mmengine import Registry, MODELS as MMENGINE_MODELS

MODELS = Registry('model', parent=MMENGINE_MODELS, scope='mmalpha', locations=['mmalpha.models'])

The following figure shows the hierarchy of MMEngine and MMAlpha.

The count_registered_modules function can be used to print the modules that have been registered to MMEngine and their hierarchy.

from mmengine.registry import count_registered_modules

count_registered_modules()

We define a customized LogSoftmax module in MMAlpha and register it to the MODELS in MMAlpha.

@MODELS.register_module()
class LogSoftmax(nn.Module):
 def __init__(self, dim=None):
 super().__init__()

 def forward(self, x):
 print('call LogSoftmax.forward')
 return x

Here we use the LogSoftmax in the configuration of MMAlpha.

model = MODELS.build(cfg=dict(type='LogSoftmax'))

We can also use the modules of the parent node MMEngine here in the MMAlpha.

model = MODELS.build(cfg=dict(type='RReLU', lower=0.2))
scope is optional
model = MODELS.build(cfg=dict(type='mmengine.RReLU'))

If no prefix is added, the build method will first find out if the module exists in the current node and return it if there is one. Otherwise, it will continue to look up the parent nodes or even the ancestor node until it finds the module. If the same module exists in both the current node and the parent nodes, we need to specify the scope prefix to indicate that we want to use the module of the parent nodes.

import torch

input = torch.randn(2)
output = model(input)
call RReLU.forward
print(output)

How does the parent node know about child registry?

When working in our MMAlpha it might be necessary to use the Runner class defined in MMENGINE. This class is in charge of building most of the objects. If these objects are added to the child registry (MMAlpha), how is MMEngine able to find them? It cannot, MMEngine needs to switch to the Registry from MMEngine to MMAlpha according to the scope which is defined in default_runtime.py for searching the target class.

We can also init the scope accordingly, see example below:

from mmalpha.registry import MODELS
from mmengine.registry import MODELS as MMENGINE_MODELS
from mmengine.registry import init_default_scope
import torch.nn as nn

@MODELS.register_module()
class LogSoftmax(nn.Module):
 def __init__(self, dim=None):
 super().__init__()

 def forward(self, x):
 print('call LogSoftmax.forward')
 return x

Works because we are using mmalpha registry
MODELS.build(dict(type="LogSoftmax"))

Fails because mmengine registry does not know about stuff registered in mmalpha
MMENGINE_MODELS.build(dict(type="LogSoftmax"))

Works because we are using mmalpha registry
init_default_scope('mmalpha')
MMENGINE_MODELS.build(dict(type="LogSoftmax"))

Use the module of a sibling node

In addition to using the module of the parent nodes, users can also call the module of a sibling node.

Suppose there is another project called MMBeta, which, like MMAlpha, defines MODELS and set its parent node to MMEngine.

from mmengine import Registry, MODELS as MMENGINE_MODELS

MODELS = Registry('model', parent=MMENGINE_MODELS, scope='mmbeta')

The following figure shows the registry structure of MMAlpha and MMBeta.

Now we call the modules of MMAlpha in MMBeta.

model = MODELS.build(cfg=dict(type='mmalpha.LogSoftmax'))
output = model(input)
call LogSoftmax.forward
print(output)

Calling a module of a sibling node requires the scope prefix to be specified in type, so the above configuration requires the prefix mmalpha.

However, if you need to call several modules of a sibling node, each with a prefix, this requires a lot of modification. Therefore, MMEngine introduces the DefaultScope, with which Registry can easily support temporary switching of the current node to the specified node.

If you need to switch the current node to the specified node temporarily, just set _scope_ to the scope of the specified node in cfg.

model = MODELS.build(cfg=dict(type='LogSoftmax', _scope_='mmalpha'))
output = model(input)
call LogSoftmax.forward
print(output)

 Config

Config

	Config

	Read the configuration file

	How to use Config

	Inheritance between configuration files

	Overview of inheritance mechanism

	Modify the inherited fields

	Delete key in dict

	Reference of the inherited file

	Dump the configuration file

	Advanced usage

	Predefined fields

	Modify the fields in command line

	Replace fields with environment variables

	import the custom module

	Inherit configuration files across repository

	Get configuration files across repository

	A Pure Python style Configuration File (Beta)

	Basic Syntax

	Module Construction

	Inheritance

	Dump the Configuration File

	What is Lazy Import

	Limitations

	Migration Guide

MMEngine implements an abstract configuration class (Config) to provide a unified configuration access interface for users. Config supports different types of configuration file, including python, json and yaml, and you can choose the type according to your preference. Config overrides some magic method, which could help you access the data stored in Config just like getting values from dict, or getting attributes from instances. Besides, Config also provides an inheritance mechanism, which could help you better organize and manage the configuration files.

Before starting the tutorial, let’s download the configuration files needed in the tutorial (it is recommended to execute them in a temporary directory to facilitate deleting these files latter.):

wget https://raw.githubusercontent.com/open-mmlab/mmengine/main/docs/resources/config/config_sgd.py
wget https://raw.githubusercontent.com/open-mmlab/mmengine/main/docs/resources/config/cross_repo.py
wget https://raw.githubusercontent.com/open-mmlab/mmengine/main/docs/resources/config/custom_imports.py
wget https://raw.githubusercontent.com/open-mmlab/mmengine/main/docs/resources/config/demo_train.py
wget https://raw.githubusercontent.com/open-mmlab/mmengine/main/docs/resources/config/example.py
wget https://raw.githubusercontent.com/open-mmlab/mmengine/main/docs/resources/config/learn_read_config.py
wget https://raw.githubusercontent.com/open-mmlab/mmengine/main/docs/resources/config/my_module.py
wget https://raw.githubusercontent.com/open-mmlab/mmengine/main/docs/resources/config/optimizer_cfg.py
wget https://raw.githubusercontent.com/open-mmlab/mmengine/main/docs/resources/config/predefined_var.py
wget https://raw.githubusercontent.com/open-mmlab/mmengine/main/docs/resources/config/replace_data_root.py
wget https://raw.githubusercontent.com/open-mmlab/mmengine/main/docs/resources/config/replace_num_classes.py
wget https://raw.githubusercontent.com/open-mmlab/mmengine/main/docs/resources/config/refer_base_var.py
wget https://raw.githubusercontent.com/open-mmlab/mmengine/main/docs/resources/config/resnet50_delete_key.py
wget https://raw.githubusercontent.com/open-mmlab/mmengine/main/docs/resources/config/resnet50_lr0.01.py
wget https://raw.githubusercontent.com/open-mmlab/mmengine/main/docs/resources/config/resnet50_runtime.py
wget https://raw.githubusercontent.com/open-mmlab/mmengine/main/docs/resources/config/resnet50.py
wget https://raw.githubusercontent.com/open-mmlab/mmengine/main/docs/resources/config/runtime_cfg.py
wget https://raw.githubusercontent.com/open-mmlab/mmengine/main/docs/resources/config/modify_base_var.py

Note

The Config supports two styles of configuration files: text style and pure Python style (introduced in v0.8.0). Each has its own characteristics while maintaining a unified interface for calling. For users who are not familiar with the basic usage of the Config, it is recommended to start reading from the section on Read the configuration file to understand the functionality of the Config and the syntax of text style configuration files. In some cases, the syntax of text style configuration files is more concise and compatible with different formats such as json and yaml. If you prefer a more flexible syntax for configuration files, it is recommended to use the Pure Python Style Configuration Files (beta).

Read the configuration file

Config provides a uniform interface Config.fromfile() to read and parse configuration files.

A valid configuration file should define a set of key-value pairs, and here are a few examples:

Python:

test_int = 1
test_list = [1, 2, 3]
test_dict = dict(key1='value1', key2=0.1)

Json:

{
 "test_int": 1,
 "test_list": [1, 2, 3],
 "test_dict": {"key1": "value1", "key2": 0.1}
}

YAML:

test_int: 1
test_list: [1, 2, 3]
test_dict:
 key1: "value1"
 key2: 0.1

For the above three formats, assuming the file names are config.py, config.json, and config.yml. Loading these files with Config.fromfile('config.xxx') will return the same result, which contain test_int, test_list and test_dict 3 variables.

Let’s take config.py as an example:

from mmengine.config import Config

cfg = Config.fromfile('learn_read_config.py')
print(cfg)

Config (path: learn_read_config.py): {'test_int': 1, 'test_list': [1, 2, 3], 'test_dict': {'key1': 'value1', 'key2': 0.1}}

How to use Config

After loading the configuration file, we can access the data stored in Config instance just like getting/setting values from dict, or getting/setting attributes from instances.

print(cfg.test_int)
print(cfg.test_list)
print(cfg.test_dict)
cfg.test_int = 2

print(cfg['test_int'])
print(cfg['test_list'])
print(cfg['test_dict'])
cfg['test_list'][1] = 3
print(cfg['test_list'])

1
[1, 2, 3]
{'key1': 'value1', 'key2': 0.1}
2
[1, 2, 3]
{'key1': 'value1', 'key2': 0.1}
[1, 3, 3]

Note

The dict object parsed by Config will be converted to ConfigDict, and then we can access the value of the dict the same as accessing the attribute of an instance.

We can use the Config combination with the Registry to build registered instance easily.

Here is an example of defining optimizers in a configuration file.

config_sgd.py:

optimizer = dict(type='SGD', lr=0.1, momentum=0.9, weight_decay=0.0001)

Suppose we have defined a registry OPTIMIZERS, which includes various optimizers. Then we can build the optimizer as below

from mmengine import Config, optim
from mmengine.registry import OPTIMIZERS

import torch.nn as nn

cfg = Config.fromfile('config_sgd.py')

model = nn.Conv2d(1, 1, 1)
cfg.optimizer.params = model.parameters()
optimizer = OPTIMIZERS.build(cfg.optimizer)
print(optimizer)

SGD (
Parameter Group 0
 dampening: 0
 foreach: None
 lr: 0.1
 maximize: False
 momentum: 0.9
 nesterov: False
 weight_decay: 0.0001
)

Inheritance between configuration files

Sometimes, the difference between two different configuration files is so small that only one field may be changed. Therefore, it’s unwise to copy and paste everything only to modify one line, which makes it hard for us to locate the specific difference after a long time.

In another case, multiple configuration files may have the same batch of fields, and we have to copy and paste them in different configuration files. It will also be hard to maintain these fields in a long time.

We address these issues with inheritance mechanism, detailed as below.

Overview of inheritance mechanism

Here is an example to illustrate the inheritance mechanism.

optimizer_cfg.py:

optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)

resnet50.py:

base = ['optimizer_cfg.py']
model = dict(type='ResNet', depth=50)

Although we don’t define optimizer in resnet50.py, since we wrote _base_ = ['optimizer_cfg.py'], it will inherit the fields defined in optimizer_cfg.py.

cfg = Config.fromfile('resnet50.py')
print(cfg.optimizer)

{'type': 'SGD', 'lr': 0.02, 'momentum': 0.9, 'weight_decay': 0.0001}

base is a reserved field for the configuration file. It specifies the inherited base files for the current file. Inheriting multiple files will get all the fields at the same time, but it requires that there are no repeated fields defined in all base files.

runtime_cfg.py:

gpu_ids = [0, 1]

resnet50_runtime.py:

base = ['optimizer_cfg.py', 'runtime_cfg.py']
model = dict(type='ResNet', depth=50)

In this case, reading the resnet50_runtime.py will give you 3 fields model, optimizer, and gpu_ids.

cfg = Config.fromfile('resnet50_runtime.py')
print(cfg.optimizer)

{'type': 'SGD', 'lr': 0.02, 'momentum': 0.9, 'weight_decay': 0.0001}

By this way, we can disassemble the configuration file, define some general configuration files, and inherit them in the specific configuration file. This could avoid defining a lot of duplicated contents in multiple configuration files.

Modify the inherited fields

Sometimes, we want to modify some of the fields in the inherited files. For example we want to modify the learning rate from 0.02 to 0.01 after inheriting optimizer_cfg.py.

In this case, you can simply redefine the fields in the new configuration file. Note that since the optimizer field is a dictionary, we only need to redefine the modified fields. This rule also applies to adding fields.

resnet50_lr0.01.py:

base = ['optimizer_cfg.py', 'runtime_cfg.py']
model = dict(type='ResNet', depth=50)
optimizer = dict(lr=0.01)

After reading this configuration file, you can get the desired result.

cfg = Config.fromfile('resnet50_lr0.01.py')
print(cfg.optimizer)

{'type': 'SGD', 'lr': 0.01, 'momentum': 0.9, 'weight_decay': 0.0001}

For non-dictionary fields, such as integers, strings, lists, etc., they can be completely overwritten by redefining them. For example, the code block below will change the value of the gpu_ids to [0].

base = ['optimizer_cfg.py', 'runtime_cfg.py']
model = dict(type='ResNet', depth=50)
gpu_ids = [0]

Delete key in dict

Sometimes we not only want to modify or add the keys, but also want to delete them. In this case, we need to set _delete_=True in the target field(dict) to delete all the keys that do not appear in the newly defined dictionary.

resnet50_delete_key.py:

base = ['optimizer_cfg.py', 'runtime_cfg.py']
model = dict(type='ResNet', depth=50)
optimizer = dict(_delete_=True, type='SGD', lr=0.01)

At this point, optimizer will only have the keys type and lr. momentum and weight_decay will no longer exist.

cfg = Config.fromfile('resnet50_delete_key.py')
print(cfg.optimizer)

{'type': 'SGD', 'lr': 0.01}

Reference of the inherited file

Sometimes we want to reuse the field defined in _base_, we can get a copy of the corresponding variable by using {{_base_.xxxx}}:

refer_base_var.py

base = ['resnet50.py']
a = {{_base_.model}}

After parsing, the value of a becomes model defined in resnet50.py

cfg = Config.fromfile('refer_base_var.py')
print(cfg.a)

{'type': 'ResNet', 'depth': 50}

We can use this way to get the variables defined in _base_ in the json, yaml, and python configuration files.

Although this way is general for all types of files, there are some syntactic limitations that prevent us from taking full advantage of the dynamic nature of the python configuration file. For example, if we want to modify a variable defined in _base_:

base = ['resnet50.py']
a = {{_base_.model}}
a['type'] = 'MobileNet'

The Config is not able to parse such a configuration file (it will raise an error when parsing). The Config provides a more pythonic way to modify base variables for python configuration files.

modify_base_var.py:

base = ['resnet50.py']
a = _base_.model
a.type = 'MobileNet'

cfg = Config.fromfile('modify_base_var.py')
print(cfg.a)

{'type': 'MobileNet', 'depth': 50}

Dump the configuration file

The user may pass some parameters to modify some fields of the configuration file at the entry point of the training script. Therefore, we provide the dump method to export the changed configuration file.

Similar to reading the configuration file, the user can choose the format of the dumped file by using cfg.dump('config.xxx'). dump can also export configuration files with inheritance relationships, and the dumped files can be used independently without the files defined in _base_.

Based on the resnet50.py defined above, we can load and dump it like this:

cfg = Config.fromfile('resnet50.py')
cfg.dump('resnet50_dump.py')

resnet50_dump.py

optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
model = dict(type='ResNet', depth=50)

Similarly, we can dump configuration files in json, yaml format:

resnet50_dump.yaml

model:
 depth: 50
 type: ResNet
optimizer:
 lr: 0.02
 momentum: 0.9
 type: SGD
 weight_decay: 0.0001

resnet50_dump.json

{"optimizer": {"type": "SGD", "lr": 0.02, "momentum": 0.9, "weight_decay": 0.0001}, "model": {"type": "ResNet", "depth": 50}}

In addition, dump can also dump cfg loaded from a dictionary.

cfg = Config(dict(a=1, b=2))
cfg.dump('dump_dict.py')

dump_dict.py

a=1
b=2

Advanced usage

In this section, we’ll introduce some advanced usage of the Config, and some tips that could make it easier for users to develop and use downstream repositories.

Note

If you use pure Python style configuration file. Advanced usage should not be used except for the function described in “Modify the fields in command line”

Predefined fields

Sometimes we need some fields in the configuration file, which are related to the path to the workspace. For example, we define a working directory in the configuration file that holds the models and logs for this set of experimental configurations. We expect to have different working directories for different configuration files. A common choice is to use the configuration file name directly as part of the working directory name.
Taking predefined_var.py as an example:

work_dir = './work_dir/{{fileBasenameNoExtension}}'

Here {{fileBasenameNoExtension}} means the filename without suffix .py of the config file, and the variable in {{}} will be interpreted as predefined_var

cfg = Config.fromfile('./predefined_var.py')
print(cfg.work_dir)

./work_dir/predefined_var

Currently, there are 4 predefined fields referenced from the relevant fields defined in VS Code [https://code.visualstudio.com/docs/editor/variables-reference].

	{{fileDirname}} - the directory name of the current file, e.g. /home/your-username/your-project/folder

	{{fileBasename}} - the filename of the current file, e.g. file.py

	{{fileBasenameNoExtension}} - the filename of the current file without the extension, e.g. file

	{{fileExtname}} - the extension of the current file, e.g. .py

Modify the fields in command line

Sometimes we only want to modify part of the configuration and do not want to modify the configuration file itself. For example, if we want to change the learning rate during the experiment but do not want to write a new configuration file, the common practice is to pass the parameters at the command line to override the relevant configuration.

If we want to modify some internal parameters, such as the learning rate of the optimizer, the number of channels in the convolution layer etc., Config provides a standard procedure that allows us to modify the parameters at any level easily from the command line.

Training script:

demo_train.py

import argparse

from mmengine.config import Config, DictAction

def parse_args():
 parser = argparse.ArgumentParser(description='Train a model')
 parser.add_argument('config', help='train config file path')
 parser.add_argument(
 '--cfg-options',
 nargs='+',
 action=DictAction,
 help='override some settings in the used config, the key-value pair '
 'in xxx=yyy format will be merged into config file. If the value to '
 'be overwritten is a list, it should be like key="[a,b]" or key=a,b '
 'It also allows nested list/tuple values, e.g. key="[(a,b),(c,d)]" '
 'Note that the quotation marks are necessary and that no white space '
 'is allowed.')

 args = parser.parse_args()
 return args

def main():
 args = parse_args()
 cfg = Config.fromfile(args.config)
 if args.cfg_options is not None:
 cfg.merge_from_dict(args.cfg_options)
 print(cfg)

if __name__ == '__main__':
 main()

The sample configuration file is as follows.

example.py

model = dict(type='CustomModel', in_channels=[1, 2, 3])
optimizer = dict(type='SGD', lr=0.01)

We can modify the internal fields from the command line by . For example, if we want to modify the learning rate, we only need to execute the script like this:

python demo_train.py ./example.py --cfg-options optimizer.lr=0.1

Config (path: ./example.py): {'model': {'type': 'CustomModel', 'in_channels': [1, 2, 3]}, 'optimizer': {'type': 'SGD', 'lr': 0.1}}

We successfully modified the learning rate from 0.01 to 0.1. If we want to change a list or a tuple, such as in_channels in the above example. We need to put double quotes around (), [] when assigning the value on the command line.

python demo_train.py ./example.py --cfg-options model.in_channels="[1, 1, 1]"

Config (path: ./example.py): {'model': {'type': 'CustomModel', 'in_channels': [1, 1, 1]}, 'optimizer': {'type': 'SGD', 'lr': 0.01}}

Note

The standard procedure only supports modifying String, Integer, Floating Point, Boolean, None, List, and Tuple fields from the command line. For the elements of list and tuple instance, each of them must be one of the above seven types.

Note

The behavior of DictAction is similar with "extend". It stores a list, and extends each argument value to the list, like:

python demo_train.py ./example.py --cfg-options optimizer.type="Adam" --cfg-options model.in_channels="[1, 1, 1]"

Config (path: ./example.py): {'model': {'type': 'CustomModel', 'in_channels': [1, 1, 1]}, 'optimizer': {'type': 'Adam', 'lr': 0.01}}

Replace fields with environment variables

When a field is deeply nested, we need to add a long prefix at the command line to locate it. To alleviate this problem, MMEngine allows users to substitute fields in configuration with environment variables.

Before parsing the configuration file, the program will search all {{$ENV_VAR:DEF_VAL}} fields and substitute those sections with environment variables. Here, ENV_VAR is the name of the environment variable used to replace this section, DEF_VAL is the default value if ENV_VAR is not set.

When we want to modify the dataset path at the command line, we can take replace_data_root.py as an example:

dataset_type = 'CocoDataset'
data_root = '{{$DATASET:/data/coco/}}'
dataset=dict(ann_file= data_root + 'train.json')

If we run demo_train.py to parse this configuration file.

python demo_train.py replace_data_root.py

Config (path: replace_data_root.py): {'dataset_type': 'CocoDataset', 'data_root': '/data/coco/', 'dataset': {'ann_file': '/data/coco/train.json'}}

Here, we don’t set the environment variable DATASET. Thus, the program directly replaces {{$DATASET:/data/coco/}} with the default value /data/coco/. If we set DATASET at the command line:

DATASET=/new/dataset/path/ python demo_train.py replace_data_root.py

Config (path: replace_data_root.py): {'dataset_type': 'CocoDataset', 'data_root': '/new/dataset/path/', 'dataset': {'ann_file': '/new/dataset/path/train.json'}}

The value of data_root has been substituted with the value of DATASET as /new/dataset/path.

It is noteworthy that both --cfg-options and {{$ENV_VAR:DEF_VAL}} allow users to modify fields in command line. But there is a small difference between those two methods. Environment variable substitution occurs before the configuration parsing. If the replaced field is also involved in other fields assignment, the environment variable substitution will also affect the other fields.

We take demo_train.py and replace_data_root.py for example. If we replace data_root by setting --cfg-options data_root='/new/dataset/path':

python demo_train.py replace_data_root.py --cfg-options data_root='/new/dataset/path/'

Config (path: replace_data_root.py): {'dataset_type': 'CocoDataset', 'data_root': '/new/dataset/path/', 'dataset': {'ann_file': '/data/coco/train.json'}}

As we can see, only data_root has been modified. dataset.ann_file is still the default value.

In contrast, if we replace data_root by setting DATASET=/new/dataset/path:

DATASET=/new/dataset/path/ python demo_train.py replace_data_root.py

Config (path: replace_data_root.py): {'dataset_type': 'CocoDataset', 'data_root': '/new/dataset/path/', 'dataset': {'ann_file': '/new/dataset/path/train.json'}}

Both data_root and dataset.ann_file have been modified.

Environment variables can also be used to replace other types of fields. We can use {{'$ENV_VAR:DEF_VAL'}} or {{"$ENV_VAR:DEF_VAL"}} format to ensure the configuration file conforms to python syntax.

We can take replace_num_classes.py as an example:

model=dict(
 bbox_head=dict(
 num_classes={{'$NUM_CLASSES:80'}}))

If we run demo_train.py to parse this configuration file.

python demo_train.py replace_num_classes.py

Config (path: replace_num_classes.py): {'model': {'bbox_head': {'num_classes': 80}}}

Let us set the environment variable NUM_CLASSES

NUM_CLASSES=20 python demo_train.py replace_num_classes.py

Config (path: replace_num_classes.py): {'model': {'bbox_head': {'num_classes': 20}}}

import the custom module

If we customize a module and register it into the corresponding registry, could we directly build it from the configuration file as the previous section does? The answer is “I don’t know” since I’m not sure the registration process has been triggered. To solve this “unknown” case, Config provides the custom_imports function, to make sure your module could be registered as expected.

For example, we customize an optimizer:

from mmengine.registry import OPTIMIZERS

@OPTIMIZERS.register_module()
class CustomOptim:
 pass

A matched config file:

my_module.py

optimizer = dict(type='CustomOptim')

To make sure CustomOptim will be registered, we should set the custom_imports field like this:

custom_imports.py

custom_imports = dict(imports=['my_module'], allow_failed_imports=False)
optimizer = dict(type='CustomOptim')

And then, once the custom_imports can be loaded successfully, we can build the CustomOptim from the custom_imports.py.

cfg = Config.fromfile('custom_imports.py')

from mmengine.registry import OPTIMIZERS

custom_optim = OPTIMIZERS.build(cfg.optimizer)
print(custom_optim)

<my_module.CustomOptim object at 0x7f6983a87970>

Inherit configuration files across repository

It is annoying to copy a large number of configuration files when developing a new repository based on some existing repositories. To address this issue, Config support inherit configuration files from other repositories. For example, based on MMDetection, we want to develop a repository, we can use the MMDetection configuration file like this:

cross_repo.py

base = [
 'mmdet::_base_/schedules/schedule_1x.py',
 'mmdet::_base_/datasets/coco_instance.py',
 'mmdet::_base_/default_runtime.py',
 'mmdet::_base_/models/faster_rcnn_r50_fpn.py',
]

cfg = Config.fromfile('cross_repo.py')
print(cfg.train_cfg)

{'type': 'EpochBasedTrainLoop', 'max_epochs': 12, 'val_interval': 1, '_scope_': 'mmdet'}

Config will parse mmdet:: to find mmdet package and inherits the specified configuration file. Actually, as long as the setup.py of the repository(package) conforms to MMEngine Installation specification, Config can use {package_name}:: to inherit the specific configuration file.

Get configuration files across repository

Config also provides get_config and get_model to get the configuration file and the trained model from the downstream repositories.

The usage of get_config and get_model are similar to the previous section:

An example of get_config:

from mmengine.hub import get_config

cfg = get_config(
 'mmdet::faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py', pretrained=True)
print(cfg.model_path)

https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth

An example of get_model:

from mmengine.hub import get_model

model = get_model(
 'mmdet::faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py', pretrained=True)
print(type(model))

http loads checkpoint from path: https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_fpn_1x_coco/faster_rcnn_r50_fpn_1x_coco_20200130-047c8118.pth
<class 'mmdet.models.detectors.faster_rcnn.FasterRCNN'>

A Pure Python style Configuration File (Beta)

In the previous tutorial, we introduced how to use configuration files to build modules with registry and how to use _base_ to inherit configuration files. These pure text style configuration files can satisfy most of our development needs and some module aliases can greatly simplify the configuration files (e.g. ResNet can refer to mmcls.models.ResNet). However, there are also some disadvantages:

	In the configuration file, the type field is specified by a string, and IDE cannot directly jump to the corresponding class definition, which is not conducive to code reading and jumping.

	The inheritance of configuration files is also specified by a string, and IDE cannot directly jump to the inherited file. When the inheritance structure of the configuration file is complex, it is not conducive to reading and jumping of the configuration file.

	The inheritance rules are relatively implicit, and beginners find it difficult to understand how the configuration file merges variables with the same fields and derives special syntax such as _delete_, resulting in a higher learning cost.

	It is easy for users to forget to register the module and cause module not found errors.

	In the yet-to-be-mentioned cross-codebase inheritance, the introduction of the scope makes the inheritance rules of the configuration file more complicated, and beginners find it difficult to understand.

In summary, although pure text style configuration files can provide the same syntax rules for python, json, and yaml format configurations, when the configuration files become complex, pure text style configuration files will appear inadequate. Therefore, we provide a pure Python style configuration file, i.e., the lazy import mode, which can fully utilize Python’s syntax rules to solve the above problems. At the same time, the pure Python style configuration file also supports exporting to json and yaml formats.

Basic Syntax

In the previous tutorial, we introduced module construction, inheritance, and export based on pure text style configuration files. This section will introduce pure Python style configuration files based on these three aspects.

Module Construction

We use a simple example to compare pure Python style and pure text style configuration files:

Pure Python style

No need for registration

Pure text style

Registration process
from torch.optim import SGD
from mmengine.registry import OPTIMIZERS

OPTIMIZERS.register_module(module=SGD, name='SGD')

Pure Python style

Configuration file writing
from torch.optim import SGD

optimizer = dict(type=SGD, lr=0.1)

Pure text style

Configuration file writing
optimizer = dict(type='SGD', lr=0.1)

Pure Python style

The construction process is exactly the same
import torch.nn as nn
from mmengine.registry import OPTIMIZERS

cfg = Config.fromfile('optimizer.py')
model = nn.Conv2d(1, 1, 1)
cfg.optimizer.params = model.parameters()
optimizer = OPTIMIZERS.build(cfg.optimizer)

Pure text style

The construction process is exactly the same
import torch.nn as nn
from mmengine.registry import OPTIMIZERS

cfg = Config.fromfile('optimizer.py')
model = nn.Conv2d(1, 1, 1)
cfg.optimizer.params = model.parameters()
optimizer = OPTIMIZERS.build(cfg.optimizer)

From the above example, we can see that the difference between pure Python style and pure text style configuration files is:

	Pure Python style configuration files do not require module registration.

	In pure Python style configuration files, the type field is no longer a string but directly refers to the module. Correspondingly, import syntax needs to be added in the configuration file.

It should be noted that the OpenMMLab series algorithm library still retains the registration process when adding modules. When users build their own projects based on MMEngine, if they use pure Python style configuration files, registration is not required. You may wonder that if you are not in an environment with torch installed, you cannot parse the sample configuration file. Can this configuration file still be called a configuration file? Don’t worry, we will explain this part later.

Inheritance

The inheritance syntax of pure Python style configuration files is slightly different:

Pure Python style Inheritance

from mmengine.config import read_base

with read_base():
 from .optimizer import *

Pure text style Inheritance

base = [./optimizer.py]

Pure Python style configuration files use import syntax to achieve inheritance. The advantage of doing this is that we can directly jump to the inherited configuration file for easy reading and jumping. The variable inheritance rule (add, delete, change, and search) is completely aligned with Python syntax. For example, if I want to modify the learning rate of the optimizer in the base configuration file:

from mmengine.config import read_base

with read_base():
 from .optimizer import *

optimizer is a variable defined in the base configuration file
optimizer.update(
 lr=0.01,
)

Of course, if you are already accustomed to the inheritance rules of pure text style configuration files, you can also use merge syntax to achieve the same inheritance rule as pure text style configuration files:

from mmengine.config import read_base

with read_base():
 from .optimizer import *

optimizer is a variable defined in the base configuration file
optimizer.merge(
 delete=True,
 lr=0.01,
 type='SGD'
)

The equivalent Python style writing is as follows, completely consistent with Python's import rules
optimizer = dict(
lr=0.01,
type='SGD'
)

Note

It should be noted that the update method of the dictionary in pure Python style configuration files is slightly different from dict.update. Pure Python style update will recursively update the content in the dictionary, for example:

x = dict(a=1, b=dict(c=2, d=3))

x.update(dict(b=dict(d=4)))
Update rules in the configuration file:
{a: 1, b: {c: 2, d: 4}}
Update rules in the normal dict:
{a: 1, b: {d: 4}}

It can be seen that using the update method in the configuration file will recursively update the fields, rather than simply covering them.

Compared with pure text style configuration files, the inheritance rule of pure Python style configuration files is completely aligned with the import syntax of Python, which is easier to understand and supports jumping between configuration files. You may wonder since both inheritance and module imports use import syntax, why do we need an with read_base()' statement for inheriting configuration files? On the one hand, this can improve the readability of configuration files, making inherited configuration files more prominent. On the other hand, it is also restricted by the rules of lazy_import, which will be explained later.

Dump the Configuration File

The pure Python style configuration files can also be exported via the dump interface, and there is no difference in usage. However, the exported contents will be different:

Export in pure Python style

optimizer = dict(type='torch.optim.SGD', lr=0.1)

Export in pure text style

optimizer = dict(type='SGD', lr=0.1)

Export in pure Python style

optimizer:
 type: torch.optim.SGD
 lr: 0.1

Export in pure text style

optimizer:
 type: SGD
 lr: 0.1

Export in pure Python style

{"optimizer": "torch.optim.SGD", "lr": 0.1}

Export in pure text style

{"optimizer": "SGD", "lr": 0.1}

As can be seen, the type field exported in pure Python style contains the full module information. The exported configuration file can also be directly loaded to construct an instance through the registry.

What is Lazy Import

You may find that pure Python style configuration files seem to organize configuration files using pure Python syntax. Then, I do not need configuration classes, and I could just import configuration files using Python syntax. If you have such a feeling, then it is worth celebrating because this is exactly the effect we want.

As mentioned earlier, parsing configuration files requires dependencies on third-party libraries referenced in the configuration files. This is actually a very unreasonable thing. For example, if I trained a model based on MMagic and wanted to deploy it with the onnxruntime backend of MMDeploy. Due to the lack of torch in the deployment environment, and torch is needed in the configuration file parsing process, this makes it inconvenient for me to directly use the configuration file of MMagic as the deployment configuration. To solve this problem, we introduced the concept of lazy_import.

It is a complex task to discuss the specific implementation of lazy_import, so here we only briefly introduce its function. The core idea of lazy_import is to delay the execution of the import statement in the configuration file until the configuration file is parsed, so that the dependency problem caused by the import statement in the configuration file can be avoided. During the configuration file parsing process, the equivalent code executed by the Python interpreter is as follows:

Original configuration file

from torch.optim import SGD

optimizer = dict(type=SGD)

Code actually executed by the python interpreter through the configuration class

lazy_obj = LazyObject('torch.optim', 'SGD')

optimizer = dict(type=lazy_obj)

As an internal type of the Config module, the LazyObject cannot be accessed directly by users. When accessing the type field, it will undergo a series of conversions to convert LazyObject into the actual torch.optim.SGD type. In this way, parsing the configuration file will not trigger the import of third-party libraries, while users can still access the types of third-party libraries normally when using the configuration file.

To access the internal type of LazyObject, you can use the Config.to_dict interface:

cfg = Config.fromfile('optimizer.py').to_dict()
print(type(cfg['optimizer']['type']))
mmengine.config.lazy.LazyObject

At this point, the type accessed is the LazyObject type.

However, we cannot adopt the lazy import strategy for the inheritance (import) of base files since we need the configuration file parsed to include the fields defined in the base configuration file, and we need to trigger the import really. Therefore, we have added a restriction on importing base files, which must be imported in the with read_base' context manager.

Limitations

	Functions and classes cannot be defined in the configuration file.

	The configuration file name must comply with the naming convention of Python modules, which can only contain letters, numbers, and underscores, and cannot start with a number.

	When importing variables from the base configuration file, such as from ._base_.alpha import beta, the alpha here must be the module (module) name, i.e., a Python file, rather than the package (package) name containing __init__.py.

	Importing multiple variables simultaneously in an absolute import statement, such as import torch, numpy, os, is not supported. Multiple import statements need to be used instead, such as import torch; import numpy; import os.

Migration Guide

To migrate from a pure text style configuration file to a pure Python style configuration file, the following rules must be followed:

	Replace the string type with the specific class:

	If the code does not depend on the type field being a string, and no special processing is done on the type field, the string type of the type field can be replaced with the specific class, and the class should be imported at the beginning of the configuration file.

	If the code depends on the type field being a string, the code needs to be modified, or the original string format of the type should be retained.

	Rename the configuration file. The configuration file name must comply with the naming convention of Python modules, which can only contain letters, numbers, and underscores, and cannot start with a number.

	Remove scope-related configurations. Pure Python style configuration files no longer need to use scope to get modules across libraries, and modules can be directly imported. For compatibility reasons, we still set the default_scope parameter of the Runner to mmengine, and users need to manually set it to None.

	For modules that have aliases in the registry, replace their aliases with their corresponding real modules. The following is a table of commonly used alias replacements:

 	Module
 	Alias
 	Notes

 BaseDataset

BaseDataset

Introduction

The Dataset class in the algorithm toolbox is responsible for providing input data for the model during the training/testing process. The Dataset class in each algorithm toolbox under OpenMMLab projects has some common characteristics and requirements, such as the need for efficient internal data storage format, support for the concatenation of different datasets, dataset repeated sampling, and so on.

Therefore, MMEngine implements BaseDataset which provides some basic interfaces and implements some DatasetWrappers with the same interfaces. Most of the Dataset Classes in the OpenMMLab algorithm toolbox meet the interface defined by the BaseDataset and use the same DatasetWrappers.

The basic function of the BaseDataset is to load the dataset information. Here, we divide the dataset information into two categories. One is meta information, which represents the information related to the dataset itself and sometimes needs to be obtained by the model or other external components. For example, the meta information of the dataset generally includes the category information classes in the image classification task, since the classification model usually needs to record the category information of the dataset. The other is data information, which defines the file path and corresponding label information of specific data info. In addition, another function of the BaseDataset is to continuously send data into the data pipeline for data preprocessing.

The standard data annotation file

In order to unify the dataset interface of different tasks and facilitate multiple tasks training in one model, OpenMMLab formulate the OpenMMLab 2.0 dataset format specification. Dataset annotation files should conform to this specification, and the BaseDataset reads and parses data annotation files based on this specification. If the data annotation file provided by the user does not conform to the specified format, the user can choose to convert it to the specified format and use OpenMMLab’s algorithm toolbox to conduct algorithm training and testing based on the converted data annotation file.

The OpenMMLab 2.0 dataset format specification states that annotation files must be in the format of json or yaml, yml or pickle, pkl. The dictionary stored in the annotation file must contain two fields, metainfo and data_list. The metainfo is a dictionary containing meta information about the dataset. The data_list is a list in which each element is a dictionary and the dictionary defines a raw data info. Each raw data info contains one or more training/test samples.

Here is an example of a JSON annotation file (where each raw data info contains only one training/test sample):

{
 "metainfo":
 {
 "classes": ["cat", "dog"]
 },
 "data_list":
 [
 {
 "img_path": "xxx/xxx_0.jpg",
 "img_label": 0
 },
 {
 "img_path": "xxx/xxx_1.jpg",
 "img_label": 1
 }
]
}

We assume that the data is stored in the following path:

data
├── annotations
│ ├── train.json
├── train
│ ├── xxx/xxx_0.jpg
│ ├── xxx/xxx_1.jpg
│ ├── ...

The initialization process of the BaseDataset

The initialization process of the BaseDataset is shown as follows:

	load metainfo: Obtain the meta information of the dataset. The meta information can be obtained from three sources with the priority from high to low:

	The dict of metainfo passed by the user in the __init__() function. The priority is high since the user can pass this argument when the BaseDataset is instantiated;

	The dict of BaseDataset.METAINFO in the class attributes of BaseDataset. The priority is medium since the user can change the class attributes BaseDataset.METAINFO in the custom dataset class;

	The dict of metainfo included in the annotation file. The priority is low since the annotation file is generally not changed.

If three sources have the same field, the source with the highest priority determines the value of the field. The priority comparison of these fields is: The fields in the metainfo dictionary passed by the user > The fields in the BaseDataset.METAINFO of BaseDataset > the fields in the metainfo of annotation file.

	join path: Process the path of datainfo and annotating files;

	build pipeline: Build data pipeline for the data preprocessing and data preparation;

	full init: Fully initializes the BaseDataset. This step mainly includes the following operations:

	load data list: Read and parse the annotation files that meet the OpenMMLab 2.0 dataset format specification. In this step, the parse_data_info() method is called. This method is responsible for parsing each raw data info in the annotation file;

	filter data (optional): Filters unnecessary data based on filter_cfg, such as data samples that do not contain annotations. By default, there is no filtering operation, and downstream subclasses can override it according to their own needs.

	get subset (optional): Sample a subset of dataset based on a given index or an integer value, such as only the first 10 samples for training/testing. By default, all data samples are used.

	serialize data (optional): Serialize all data samples to save memory. Please see Save memory for more details. we serialize all data samples by default.

The parse_data_info() method in the BaseDataset is used to process a raw data info in the annotation file into one or more training/test data samples. The user needs to implement the parse_data_info() method if they want to customize dataset class.

The interface of BaseDataset

Once the BaseDataset is initialized, it supports __getitem__ method to index a data info and __len__ method to get the length of dataset, just like torch.utils.data.Dataset. The Basedataset provides the following interfaces:

	metainfo: Return the meta information with a dictionary value.

	get_data_info(idx): Return the full data information of the given idx, and the return value is a dictionary.

	__getitem__(idx): Return the results of data pipeline(The input data of model) of the given ‘idx’, and the return value is a dictionary.

	__len__(): Return the length of the dataset. The return value is an integer.

	get_subset_(indices): Modify the original dataset class in inplace according to indices. If indices is int, then the original dataset class contains only the first few data samples. If indices is Sequence[int], the raw dataset class contains data samples specified according to Sequence[int].

	get_subset(indices): Return a new sub-dataset class according to indices, i.e., re-copies a sub-dataset. If indices is int, the returned sub-dataset object contains only the first few data samples. If indices is Sequence[int], the returned sub-dataset object contains the data samples specified according to Sequence[int].

Customize dataset class based on BaseDataset

We can customize the dataset class based on BaseDataset, after we understand the initialization process of BaseDataset and the provided interfaces of BaseDataset.

Annotation files that meet the OpenMMLab 2.0 dataset format specification

As mentioned above, users can overload parse_data_info() to load annotation files that meet the OpenMMLab 2.0 dataset format specification. Here is an example of using BaseDataset to implement a specific dataset.

import os.path as osp

from mmengine.dataset import BaseDataset

class ToyDataset(BaseDataset):

 # Take the above annotation file as example. The raw_data_info represents a dictionary in the data_list list:
 # {
 # 'img_path': "xxx/xxx_0.jpg",
 # 'img_label': 0,
 # ...
 # }
 def parse_data_info(self, raw_data_info):
 data_info = raw_data_info
 img_prefix = self.data_prefix.get('img_path', None)
 if img_prefix is not None:
 data_info['img_path'] = osp.join(
 img_prefix, data_info['img_path'])
 return data_info

Using Customized dataset class

The ToyDataset can be instantiated with the following configuration, once it has been defined:

class LoadImage:

 def __call__(self, results):
 results['img'] = cv2.imread(results['img_path'])
 return results

class ParseImage:

 def __call__(self, results):
 results['img_shape'] = results['img'].shape
 return results

pipeline = [
 LoadImage(),
 ParseImage(),
]

toy_dataset = ToyDataset(
 data_root='data/',
 data_prefix=dict(img_path='train/'),
 ann_file='annotations/train.json',
 pipeline=pipeline)

At the same time, the external interface provided by the BaseDataset can be used to access specific data sample information:

toy_dataset.metainfo
dict(classes=('cat', 'dog'))

toy_dataset.get_data_info(0)
{
'img_path': "data/train/xxx/xxx_0.jpg",
'img_label': 0,
...
}

len(toy_dataset)
2

toy_dataset[0]
{
'img_path': "data/train/xxx/xxx_0.jpg",
'img_label': 0,
'img': a ndarray with shape (H, W, 3), which denotes the value of the image,
'img_shape': (H, W, 3) ,
...
}

The `get_subset` interface does not modify the original dataset class, i.e. make a complete copy of it
sub_toy_dataset = toy_dataset.get_subset(1)
len(toy_dataset), len(sub_toy_dataset)
2, 1

The `get_subset_` interface modify the original dataset class in inplace
toy_dataset.get_subset_(1)
len(toy_dataset)
1

Following the above steps, we can see how to customize a dataset based on the BaseDataset and how to use the customized dataset.

Customize dataset for videos

In the above examples, each raw data info of the annotation file contains only one training/test sample (usually in the image field). If each raw data info contains several training/test samples (usually in the video domain), we only need to ensure that the return value of parse_data_info() is list[dict]:

from mmengine.dataset import BaseDataset

class ToyVideoDataset(BaseDataset):

 # raw_data_info is still a dict, but it contains multiple samples
 def parse_data_info(self, raw_data_info):
 data_list = []

 ...

 for ... :

 data_info = dict()

 ...

 data_list.append(data_info)

 return data_list

The usage of ToyVideoDataset is similar to that of ToyDataset, which will not be repeated here.

Annotation files that do not meet the OpenMMLab 2.0 dataset format specification

For annotated files that do not meet the OpenMMLab 2.0 dataset format specification, there are two ways to use:

	Convert the annotation files that do not meet the specifications into the annotation files that do meet the specifications, and then use the BaseDataset in the above way.

	Implement a new dataset class that inherits from the BaseDataset and overloads the load_data_list(self): function of the BaseDataset to handle annotation files that don’t meet the specification and guarantee a return value of list[dict], where each dict represents a data sample.

Other features of BaseDataset

The BaseDataset also contains the following features:

lazy init

When the BaseDataset is instantiated, the annotation file needs to be read and parsed, therefore it will take some time. However, in some cases, such as the visualization of prediction, only the meta information of the BaseDataset is required, and reading and parsing the annotation file may not be necessary. To save time on instantiating the BaseDataset in this case, the BaseDataset supports lazy init:

pipeline = [
 LoadImage(),
 ParseImage(),
]

toy_dataset = ToyDataset(
 data_root='data/',
 data_prefix=dict(img_path='train/'),
 ann_file='annotations/train.json',
 pipeline=pipeline,
 # Pass the lazy_init variable in here
 lazy_init=True)

When lazy_init=True, the initialization of ToyDataset’s only performs steps 1, 2, and 3 of the BaseDataset initialization process. At this time, toy_dataset was not fully initialized, since toy_dataset will not read and parse the annotation file. The toy_dataset only set the meta information of the dataset (metainfo).

Naturally, if you need to access specific data information later, you can manually call the toy_dataset.full_init() interface to perform the complete initialization process, during which the data annotation file will be read and parsed. Calling the get_data_info (independence idx), __len__ (), __getitem__ (independence idx), get_subset_ (indices) and get_subset(indices) interface will also automatically call the full_init() interface to perform the full initialization process (only on the first call, later calls will not call the full_init() interface repeatedly):

Full initialization
toy_dataset.full_init()

After initialization, you can now get the data info
len(toy_dataset)
2
toy_dataset[0]
{
'img_path': "data/train/xxx/xxx_0.jpg",
'img_label': 0,
'img': a ndarray with shape (H, W, 3), which denotes the value the image,
'img_shape': (H, W, 3) ,
...
}

Notice:

Performing full initialization by calling the __getitem__() interface directly carries some risks: If a dataset object is not fully initialized by setting lazy_init=True firstly, then it is directly sent to the dataloader. Different dataloader workers will read and parse the annotation file at the same time in the subsequent data reading process. Although this may work normally, it consumes a lot of time and memory. Therefore, it is recommended to manually call the full_init() interface to perform the full initialization process before you need to access specific data.

The above is not fully initialized by setting lazy_init=True, and then complete initialization according to the demand, called lazy init.

Save memory

In the specific process of reading data, the dataloader will usually prefetch data from multiple dataloader workers, and multiple workers have complete dataset object backup, so there will be multiple copies of the same data_list in the memory. In order to save this part of memory consumption, The BaseDataset can serialize data_list into memory in advance, so that multiple workers can share the same copy of data_list, so as to save memory.

By default, the BaseDataset stores the serialization of data_list into memory. It is also possible to control whether the data will be serialized into memory ahead of time by using the serialize_data argument (default is True) :

pipeline = [
 LoadImage(),
 ParseImage(),
]

toy_dataset = ToyDataset(
 data_root='data/',
 data_prefix=dict(img_path='train/'),
 ann_file='annotations/train.json',
 pipeline=pipeline,
 # Pass the serialize data argument in here
 serialize_data=False)

The above example does not store the data_list serialization into memory in advance, so it is not recommended to instantiate the dataset class, when using the dataloader to open multiple dataloader workers to load the data.

DatasetWrappers

In addition to BaseDataset, MMEngine also provides several DatasetWrappers: ConcatDataset, RepeatDataset, ClassBalancedDataset. These dataset wrappers also support lazy init and have memory-saving features.

ConcatDataset

MMEngine provides a ConcatDataset wrapper to concatenate datasets in the following way:

from mmengine.dataset import ConcatDataset

pipeline = [
 LoadImage(),
 ParseImage(),
]

toy_dataset_1 = ToyDataset(
 data_root='data/',
 data_prefix=dict(img_path='train/'),
 ann_file='annotations/train.json',
 pipeline=pipeline)

toy_dataset_2 = ToyDataset(
 data_root='data/',
 data_prefix=dict(img_path='val/'),
 ann_file='annotations/val.json',
 pipeline=pipeline)

toy_dataset_12 = ConcatDataset(datasets=[toy_dataset_1, toy_dataset_2])

The above example combines the train set and the val set of the dataset into one large dataset.

RepeatDataset

MMEngine provides RepeatDataset wrapper to repeat a dataset several times, as follows:

from mmengine.dataset import RepeatDataset

pipeline = [
 LoadImage(),
 ParseImage(),
]

toy_dataset = ToyDataset(
 data_root='data/',
 data_prefix=dict(img_path='train/'),
 ann_file='annotations/train.json',
 pipeline=pipeline)

toy_dataset_repeat = RepeatDataset(dataset=toy_dataset, times=5)

The above example samples the train set of the dataset five times.

ClassBalancedDataset

MMEngine provides ClassBalancedDataset wrapper to repeatedly sample the corresponding samples based on the frequency of category occurrence in the dataset.

Notice:

The ClassBalancedDataset wrapper assumes that the wrapped dataset class supports the get_cat_ids(idx) method, which returns a list. The list contains the categories of data_info given by ‘idx’. The usage is as follows:

from mmengine.dataset import BaseDataset, ClassBalancedDataset

class ToyDataset(BaseDataset):

 def parse_data_info(self, raw_data_info):
 data_info = raw_data_info
 img_prefix = self.data_prefix.get('img_path', None)
 if img_prefix is not None:
 data_info['img_path'] = osp.join(
 img_prefix, data_info['img_path'])
 return data_info

 # The necessary method that needs to return the category of data sample
 def get_cat_ids(self, idx):
 data_info = self.get_data_info(idx)
 return [int(data_info['img_label'])]

pipeline = [
 LoadImage(),
 ParseImage(),
]

toy_dataset = ToyDataset(
 data_root='data/',
 data_prefix=dict(img_path='train/'),
 ann_file='annotations/train.json',
 pipeline=pipeline)

toy_dataset_repeat = ClassBalancedDataset(dataset=toy_dataset, oversample_thr=1e-3)

The above example resamples the train set of the dataset with oversample_thr=1e-3. Specifically, for categories whose frequency is less than 1e-3 in the dataset, samples corresponding to this category will be sampled repeatedly; otherwise, samples will not be sampled repeatedly. Please refer to the API documentation of ClassBalancedDataset for specific sampling policies.

Customize DatasetWrapper

Since the BaseDataset support lazy init, some rules need to be followed when customizing the DatasetWrapper. Here is an example to show how to customize the DatasetWrapper:

from mmengine.dataset import BaseDataset
from mmengine.registry import DATASETS

@DATASETS.register_module()
class ExampleDatasetWrapper:

 def __init__(self, dataset, lazy_init=False, ...):
 # Build the source dataset (self.dataset)
 if isinstance(dataset, dict):
 self.dataset = DATASETS.build(dataset)
 elif isinstance(dataset, BaseDataset):
 self.dataset = dataset
 else:
 raise TypeError(
 'elements in datasets sequence should be config or '
 f'`BaseDataset` instance, but got {type(dataset)}')
 # Record the meta information of source dataset
 self._metainfo = self.dataset.metainfo

 '''
 1. Implement some code here to record some of the hyperparameters used to wrap the dataset.
 '''

 self._fully_initialized = False
 if not lazy_init:
 self.full_init()

 def full_init(self):
 if self._fully_initialized:
 return

 # Initialize the source dataset completely
 self.dataset.full_init()

 '''
 2. Implement some code here to wrap the source dataset.
 '''

 self._fully_initialized = True

 @force_full_init
 def _get_ori_dataset_idx(self, idx: int):

 '''
 3. Implement some code here to map the wrapped index `idx` to the index of the source dataset 'ori_idx'.
 '''
 ori_idx = ...

 return ori_idx

 # Provide the same external interface as `self.dataset `.
 @force_full_init
 def get_data_info(self, idx):
 sample_idx = self._get_ori_dataset_idx(idx)
 return self.dataset.get_data_info(sample_idx)

 # Provide the same external interface as `self.dataset `.
 def __getitem__(self, idx):
 if not self._fully_initialized:
 warnings.warn('Please call `full_init` method manually to '
 'accelerate the speed.')
 self.full_init()

 sample_idx = self._get_ori_dataset_idx(idx)
 return self.dataset[sample_idx]

 # Provide the same external interface as `self.dataset `.
 @force_full_init
 def __len__(self):

 '''
 4. Implement some code here to calculate the length of the wrapped dataset.
 '''
 len_wrapper = ...

 return len_wrapper

 # Provide the same external interface as `self.dataset `.
 @property
 def metainfo(self)
 return copy.deepcopy(self._metainfo)

 Data transform

Data transform

In the OpenMMLab repositories, dataset construction and data preparation are decoupled from each other.
Usually, the dataset construction only parses the dataset and records the basic information of each sample,
while the data preparation is performed by a series of data transforms, such as data loading, preprocessing,
and formatting based on the basic information of the samples.

To use Data Transforms

In MMEngine, we use various callable data transforms classes to perform data manipulation. These data
transformation classes can accept several configuration parameters for instantiation and then process the
input data dictionary by calling. Also, all data transforms accept a dictionary as input and output the
processed data as a dictionary. A simple example is as belows:

Note

In MMEngine, we don’t have the implementations of data transforms. you can find the base data transform class
and many other data transforms in MMCV. So you need to install MMCV before learning this tutorial, see the
MMCV installation guide [https://mmcv.readthedocs.io/en/2.x/get_started/installation.html].

>>> import numpy as np
>>> from mmcv.transforms import Resize
>>>
>>> transform = Resize(scale=(224, 224))
>>> data_dict = {'img': np.random.rand(256, 256, 3)}
>>> data_dict = transform(data_dict)
>>> print(data_dict['img'].shape)
(224, 224, 3)

To use in Config Files

In config files, we can compose multiple data transforms as a list, called a data pipeline. And the data
pipeline is an argument of the dataset.

Usually, a data pipeline consists of the following parts:

	Data loading, use LoadImageFromFile [https://mmcv.readthedocs.io/en/2.x/api/generated/mmcv.transforms.LoadImageFromFile.html#mmcv.transforms.LoadImageFromFile] to load image files.

	Label loading, use LoadAnnotations [https://mmcv.readthedocs.io/en/2.x/api/generated/mmcv.transforms.LoadAnnotations.html#mmcv.transforms.LoadAnnotations] to load the bboxes, semantic segmentation and keypoint annotations.

	Data processing and augmentation, like RandomResize [https://mmcv.readthedocs.io/en/2.x/api/generated/mmcv.transforms.RandomResize.html#mmcv.transforms.RandomResize].

	Data formatting, we use different data transforms for different tasks. And the data transform for specified
task is implemented in the corresponding repository. For example, the data formatting transform for image
classification task is PackClsInputs and it’s in MMPretrain.

Here, taking the classification task as an example, we show a typical data pipeline in the figure below. For
each sample, the basic information stored in the dataset is a dictionary as shown on the far left side of the
figure, after which, every blue block represents a data transform, and in every data transform, we add some new fields (marked in green) or update some existing fields (marked in orange) in the data dictionary.

 Weight initialization

Weight initialization

Usually, we’ll customize our module based on nn.Module [https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module], which is implemented by Native PyTorch. Also, torch.nn.init [https://pytorch.org/docs/stable/nn.init.html] could help us initialize the parameters of the model easily. To simplify the process of model construction and initialization, MMEngine designed the BaseModule to help us define and initialize the model from config easily.

Initialize the model from config

The core function of BaseModule is that it could help us to initialize the model from config. Subclasses inherited from BaseModule could define the init_cfg in the __init__ function, and we can choose the method of initialization by configuring init_cfg.

Currently, we support the following initialization methods:

 	Initializer
 	Registered name
 	Function

 	ConstantInit
 	Constant
 	Initialize the weight and bias with a constant, commonly used for Convolution

 	XavierInit
 	Xavier
 	Initialize the weight by Xavier initialization, and initialize the bias with a constant

 	NormalInit
 	Normal
 	Initialize the weight by normal distribution, and initialize the bias with a constant

 	TruncNormalInit
 	TruncNormal
 	Initialize the weight by truncated normal distribution, and initialize the bias with a constant, commonly used for Transformer

 	UniformInit
 	Uniform
 	Initialize the weight by uniform distribution, and initialize the bias with a constant, commonly used for convolution

 	KaimingInit
 	Kaiming
 	Initialize the weight by Kaiming initialization, and initialize the bias with a constant. Commonly used for convolution

 	Caffe2XavierInit
 	Caffe2Xavier
 	Xavier initialization in Caffe2, and Kaiming initialization in PyTorh with "fan_in" and "normal" mode. Commonly used for convolution

 	PretrainedInit
 	Pretrained
 	Initialize the model with the pretrained model

 Visualization

Visualization

Visualization provides an intuitive explanation of the training and testing process of the deep learning model.

MMEngine provides Visualizer to visualize and store the state and intermediate results of the model training and testing process, with the following features:

	It supports basic drawing interface and feature map visualization

	It enables recording training states (such as loss and lr), performance evaluation metrics, and visualization results to a specified or multiple backends, including local device, TensorBoard, and WandB.

	It can be used in any location in the code base.

Basic Drawing APIs

Visualizer provides drawing APIs for common objects such as detection bboxes, points, text, lines, circles, polygons, and binary masks.

These APIs have the following features:

	Can be called multiple times to achieve overlay drawing requirements.

	All support multiple input types such as Tensor, Numpy array, etc.

Typical usages are as follows.

	Draw detection bboxes, masks, text, etc.

import torch
import mmcv
from mmengine.visualization import Visualizer

https://raw.githubusercontent.com/open-mmlab/mmengine/main/docs/en/_static/image/cat_and_dog.png
image = mmcv.imread('docs/en/_static/image/cat_and_dog.png',
 channel_order='rgb')
visualizer = Visualizer(image=image)
single bbox formatted as [xyxy]
visualizer.draw_bboxes(torch.tensor([72, 13, 179, 147]))
draw multiple bboxes
visualizer.draw_bboxes(torch.tensor([[33, 120, 209, 220], [72, 13, 179, 147]]))
visualizer.show()

 Abstract Data Element

Abstract Data Element

During the model training and testing, there will be a large amount of data passed through different components, and different algorithms usually have different kinds of data. For example, single-stage detectors may only need ground truth bounding boxes and ground truth box labels, whereas Mask R-CNN also requires the instance masks.

The training codes can be shown as:

for img, img_metas, gt_bboxes, gt_labels in data_loader:
 loss = retinanet(img, img_metas, gt_bboxes, gt_labels)

for img, img_metas, gt_bboxes, gt_masks, gt_labels in data_loader:
 loss = mask_rcnn(img, img_metas, gt_bboxes, gt_masks, gt_labels)

We can see that without encapsulation, the inconsistency of data required by different algorithms leads to the inconsistency of interfaces among different algorithm modules, which affects the extensibility of the whole algorithm library. Moreover, the modules within one algorithm library often need redundant interfaces in order to maintain compatibility.

These disadvantages are more obvious among different algorithm libraries, which makes it difficult to reuse modules and expand interfaces when implementing multi-task perception models (multiple tasks such as semantic segmentation, detection, key point detection, etc.).

To solve the above problems, MMEngine defines a set of abstract data interfaces to encapsulate various data during the implementation of the model. Suppose the above different data are encapsulated into data_sample, the training of different algorithms can be abstracted and unified into the following code:

for img, data_sample in dataloader:
 loss = model(img, data_sample)

The abstracted interface unifies and simplifies the interface between modules in the algorithm library, and can be used to pass data between datasets, models, visualizers, evaluates, or even within different modules in one model.

Besides the basic add, delete, update, and query functions, this interface also supports transferring data between different devices and the operation of dict and torch.Tensor, which can fully satisfy the requirements of the algorithm library.

Those algorithm libraries based on MMEngine can inherit from this design and implement their own interfaces to meet the characteristics and custom needs of data in different algorithms, improving the expandability while maintaining a unified interface.

During the implementation, there are two types of data interfaces for the algorithm libraries:

	A collection of all annotation information and prediction information for a training or testing sample, such as the output of a dataset, the inputs of model and visualizer, typically constitutes all the information of an individual training or testing sample. MMEngine defines this as a DataSample.

	A single type of prediction or annotation, typically the output of a sub-module in an algorithm model, such as the output of the RPN in two-stage detection, the output of a semantic segmentation model, the output of a keypoint branch, or the output of the generator in GANs, is defined by MMEngine as a data element (XXXData).

The following section first introduces the base class BaseDataElement for DataSample and XXXData.

BaseDataElement

There are two types of data in BaseDataElement. One is data such as the bounding box, label, and the instance mask, etc., the other is metainfo which contains the meta information of the data to ensure the integrity of the data, including img_shape, img_id, and some other basic information of the images. These information facilitate the recovery and the use of the data in visualization and other cases. Therefore, users need to explicitly distinguish and declare the data of these two types of attributes while creating the BaseDataElement.

To make it easier to use BaseDataElement, the data in both data and metainfo are attributes of BaseDataElement. We can directly access the data and metainfo by accessing the class attributes. In addition, BaseDataElement provides several methods for manipulating the data in data.

	Add, delete, update, and query data in different fields of data.

	Copy data to target devices.

	Support accessing data in the same way as a dictionary or a tensor to fully satisfy the algorithm’s requirements.

1. Create BaseDataElement

The data parameter of BaseDataElement can be freely added by means of key=value. The fields of metainfo, however, need to be explicitly specified using the keyword metainfo.

import torch
from mmengine.structures import BaseDataElement
declare an empty object
data_element = BaseDataElement()

bboxes = torch.rand((5, 4)) # suppose bboxes is a tensor in the shape of Nx4. N represents the number of the boxes
scores = torch.rand((5,)) # suppose scores is a tensor with N dimensions. N represents the number of the noxes.
img_id = 0 # image ID
H = 800 # image height
W = 1333 # image width

Set the data parameter directly in BaseDataElement
data_element = BaseDataElement(bboxes=bboxes, scores=scores)

Explicitly declare the metainfo in BaseDataElement
data_element = BaseDataElement(
 bboxes=bboxes,
 scores=scores,
 metainfo=dict(img_id=img_id, img_shape=(H, W)))

2. new and clone

Users can use the new() method to create an abstract data interface with the same state and data from an existing data interface. You can set metainfo and data while creating a new BaseDataElement to create an abstract interface with the same state and data as data or metainfo. For example, new(metainfo=xx) makes the new BaseDataElement has the same content as the cloned BaseDataElement, but metainfo is set to the newly specified content. You can also use clone() directly to get a deep copy. The behavior of the clone() is the same as the clone() in PyTorch Tensor operation.

data_element = BaseDataElement(
 bboxes=torch.rand((5, 4)),
 scores=torch.rand((5,)),
 metainfo=dict(img_id=1, img_shape=(640, 640)))

set metainfo and data while creating BaseDataElement
data_element1 = data_element.new(metainfo=dict(img_id=2, img_shape=(320, 320)))
print('bboxes is in data_element1:', 'bboxes' in data_element1) # True
print('bboxes in data_element1 is same as bbox in data_element', (data_element1.bboxes == data_element.bboxes).all())
print('img_id in data_element1 is', data_element1.img_id == 2) # True

data_element2 = data_element.new(label=torch.rand(5,))
print('bboxes is not in data_element2', 'bboxes' not in data_element2) # True
print('img_id in data_element2 is same as img_id in data_element', data_element2.img_id == data_element.img_id)
print('label in data_element2 is', 'label' in data_element2)

create a new object using `clone`, which makes the new object has the same data, same metainfo, and the same status as the data_element
data_element2 = data_element1.clone()

bboxes is in data_element1: True
bboxes in data_element1 is same as bbox in data_element tensor(True)
img_id in data_element1 is True
bboxes is not in data_element2 True
img_id in data_element2 is same as img_id in data_element True
label in data_element2 is True

3. Add and query attributes

When it comes to adding attributes, users can add attributes to the data in the same way they add class attributes. For metainfo, it generally stores metadata about images and is not usually modified. If there is a need to add attributes to metainfo, users should use the set_metainfo interface to explicitly modify it.

For querying, users can access the key-value pairs that exist only in data using keys, values, and items. Similarly, they can access the key-value pairs that exist only in metainfo using metainfo_keys, metainfo_values, and metainfo_items. Users can also access all attributes of the BaseDataElement, regardless of their type, using all_keys, all_values, and all_items.

To facilitate usage, users can access the data within data and metainfo in the same way they access class attributes. Alternatively, they can use the get() interface in a dictionary-like manner to access the data.

Note:

	BaseDataElement does not support having the same field names in both metainfo and data attributes. Therefore, users should avoid setting the same field names in them, as it would result in an error in BaseDataElement.

	Considering that InstanceData and PixelData support slicing operations on the data, in order to maintain consistency with the use of [] and reduce the number of different methods for the same need, BaseDataElement does not support accessing and setting its attributes like a dictionary. Therefore, operations like BaseDataElement[name] for value assignment and retrieval are not supported.

data_element = BaseDataElement()
Set the `metainfo` field of the data_element using `set_metainfo`,
with img_id and img_shape becoming attributes of the data_element.
data_element.set_metainfo(dict(img_id=9, img_shape=(100, 100)))
check metainfo key, value, and item
print("metainfo'keys are ", data_element.metainfo_keys())
print("metainfo'values are ", data_element.metainfo_values())
for k, v in data_element.metainfo_items():
 print(f'{k}: {v}')

print("Check img_id and img_shape from class parameters")
print('img_id: ', data_element.img_id)
print('img_shape: ', data_element.img_shape)

metainfo'keys are ['img_id', 'img_shape']
metainfo'values are [9, (100, 100)]
img_id: 9
img_shape: (100, 100)
Check img_id and img_shape from class parameters
img_id: 9
img_shape: (100, 100)

directly set data field via class attributes in BaseDataElement
data_element.scores = torch.rand((5,))
data_element.bboxes = torch.rand((5, 4))

print("data's key is: ", data_element.keys())
print("data's value is: ", data_element.values())
for k, v in data_element.items():
 print(f'{k}: {v}')

print("Check scores and bboxes via class attributes")
print('scores: ', data_element.scores)
print('bboxes: ', data_element.bboxes)

print("Check scores and bboxes via get()")
print('scores: ', data_element.get('scores', None))
print('bboxes: ', data_element.get('bboxes', None))
print('fake: ', data_element.get('fake', 'not exist'))

data's key is: ['scores', 'bboxes']
data's value is: [tensor([0.7937, 0.6307, 0.3682, 0.4425, 0.8515]), tensor([[0.9204, 0.2110, 0.2886, 0.7925],
 [0.7993, 0.8982, 0.5698, 0.4120],
 [0.7085, 0.7016, 0.3069, 0.3216],
 [0.0206, 0.5253, 0.1376, 0.9322],
 [0.2512, 0.7683, 0.3010, 0.2672]])]
scores: tensor([0.7937, 0.6307, 0.3682, 0.4425, 0.8515])
bboxes: tensor([[0.9204, 0.2110, 0.2886, 0.7925],
 [0.7993, 0.8982, 0.5698, 0.4120],
 [0.7085, 0.7016, 0.3069, 0.3216],
 [0.0206, 0.5253, 0.1376, 0.9322],
 [0.2512, 0.7683, 0.3010, 0.2672]])
Check scores and bboxes via class attributes
scores: tensor([0.7937, 0.6307, 0.3682, 0.4425, 0.8515])
bboxes: tensor([[0.9204, 0.2110, 0.2886, 0.7925],
 [0.7993, 0.8982, 0.5698, 0.4120],
 [0.7085, 0.7016, 0.3069, 0.3216],
 [0.0206, 0.5253, 0.1376, 0.9322],
 [0.2512, 0.7683, 0.3010, 0.2672]])
Check scores and bboxes via get()
scores: tensor([0.7937, 0.6307, 0.3682, 0.4425, 0.8515])
bboxes: tensor([[0.9204, 0.2110, 0.2886, 0.7925],
 [0.7993, 0.8982, 0.5698, 0.4120],
 [0.7085, 0.7016, 0.3069, 0.3216],
 [0.0206, 0.5253, 0.1376, 0.9322],
 [0.2512, 0.7683, 0.3010, 0.2672]])
fake: not exist

print("All keys in data_element is: ", data_element.all_keys())
print("The length of values in data_element is: ", len(data_element.all_values()))
for k, v in data_element.all_items():
 print(f'{k}: {v}')

All key in data_element is: ['img_id', 'img_shape', 'scores', 'bboxes']
The length of values in data_element is 4
img_id: 9
img_shape: (100, 100)
scores: tensor([0.7937, 0.6307, 0.3682, 0.4425, 0.8515])
bboxes: tensor([[0.9204, 0.2110, 0.2886, 0.7925],
 [0.7993, 0.8982, 0.5698, 0.4120],
 [0.7085, 0.7016, 0.3069, 0.3216],
 [0.0206, 0.5253, 0.1376, 0.9322],
 [0.2512, 0.7683, 0.3010, 0.2672]])

4. Delete and modify attributes

Users can modify the data attribute of BaseDataElement in the same way they modify instance attributes. As for metainfo, it generally stores metadata about images and is not usually modified. If there is a need to modify metainfo, users should use the set_metainfo interface to make explicit modifications.

For convenience in operations, data and metainfo can be directly deleted using del. Additionally, the pop method is supported to delete attributes after accessing them.

data_element = BaseDataElement(
 bboxes=torch.rand((6, 4)), scores=torch.rand((6,)),
 metainfo=dict(img_id=0, img_shape=(640, 640))
)
for k, v in data_element.all_items():
 print(f'{k}: {v}')

img_id: 0
img_shape: (640, 640)
scores: tensor([0.8445, 0.6678, 0.8172, 0.9125, 0.7186, 0.5462])
bboxes: tensor([[0.5773, 0.0289, 0.4793, 0.7573],
 [0.8187, 0.8176, 0.3455, 0.3368],
 [0.6947, 0.5592, 0.7285, 0.0281],
 [0.7710, 0.9867, 0.7172, 0.5815],
 [0.3999, 0.9192, 0.7817, 0.2535],
 [0.2433, 0.0132, 0.1757, 0.6196]])

modify data attributes
data_element.bboxes = data_element.bboxes * 2
data_element.scores = data_element.scores * -1
for k, v in data_element.items():
 print(f'{k}: {v}')

delete data attributes
del data_element.bboxes
for k, v in data_element.items():
 print(f'{k}: {v}')

data_element.pop('scores', None)
print('The keys in data is: ', data_element.keys())

scores: tensor([-0.8445, -0.6678, -0.8172, -0.9125, -0.7186, -0.5462])
bboxes: tensor([[1.1546, 0.0578, 0.9586, 1.5146],
 [1.6374, 1.6352, 0.6911, 0.6735],
 [1.3893, 1.1185, 1.4569, 0.0562],
 [1.5420, 1.9734, 1.4344, 1.1630],
 [0.7999, 1.8384, 1.5635, 0.5070],
 [0.4867, 0.0264, 0.3514, 1.2392]])
scores: tensor([-0.8445, -0.6678, -0.8172, -0.9125, -0.7186, -0.5462])
The keys in data is []

modify metainfo
data_element.set_metainfo(dict(img_shape = (1280, 1280), img_id=10))
print(data_element.img_shape) # (1280, 1280)
for k, v in data_element.metainfo_items():
 print(f'{k}: {v}')

use pop access and delete
del data_element.img_shape
for k, v in data_element.metainfo_items():
 print(f'{k}: {v}')

data_element.pop('img_id')
print('The keys in metainfo is ', data_element.metainfo_keys())

(1280, 1280)
img_id: 10
img_shape: (1280, 1280)
img_id: 10
The keys in metainfo is []

5. Tensor-like operations

Users can transform the data status in BaseDataElement like the operations in tensor.Tensor. Currently, we support cuda, cpu, to, and numpy, etc. to has the same interface as torch.Tensor.to(), which allows users to change the status of the encapsulted tensor freely.

Note: These interfaces only handle sequences types in np.array, torch.Tensor, and numbers. Data in other types will be skipped, such as strings.

data_element = BaseDataElement(
 bboxes=torch.rand((6, 4)), scores=torch.rand((6,)),
 metainfo=dict(img_id=0, img_shape=(640, 640))
)
copy data to GPU
cuda_element_1 = data_element.cuda()
print('cuda_element_1 is on the device of', cuda_element_1.bboxes.device) # cuda:0
cuda_element_2 = data_element.to('cuda:0')
print('cuda_element_1 is on the device of', cuda_element_2.bboxes.device) # cuda:0

copy data to cpu
cpu_element_1 = cuda_element_1.cpu()
print('cpu_element_1 is on the device of', cpu_element_1.bboxes.device) # cpu
cpu_element_2 = cuda_element_2.to('cpu')
print('cpu_element_2 is on the device of', cpu_element_2.bboxes.device) # cpu

convert data to FP16
fp16_instances = cuda_element_1.to(
 device=None, dtype=torch.float16, non_blocking=False, copy=False,
 memory_format=torch.preserve_format)
print('The type of bboxes in fp16_instances is', fp16_instances.bboxes.dtype) # torch.float16

detach all data gradients
cuda_element_3 = cuda_element_2.detach()
print('The data in cuda_element_3 requires grad: ', cuda_element_3.bboxes.requires_grad)
transform data to numpy array
np_instances = cpu_element_1.numpy()
print('The type of cpu_element_1 is convert to', type(np_instances.bboxes))

cuda_element_1 is on the device of cuda:0
cuda_element_1 is on the device of cuda:0
cpu_element_1 is on the device of cpu
cpu_element_2 is on the device of cpu
The type of bboxes in fp16_instances is torch.float16
The data in cuda_element_3 requires grad: False
The type of cpu_element_1 is convert to <class 'numpy.ndarray'>

6. Show properties

BaseDataElement also implements __repr__ which allows users to get all the data information through print. Meanwhile, to facilitate debugging, all attributes in BaseDataElement are added to __dict__. Users can visualize the contents directly in their IDEs. A complete property display is as follows:

img_meta = dict(img_shape=(800, 1196, 3), pad_shape=(800, 1216, 3))
instance_data = BaseDataElement(metainfo=img_meta)
instance_data.det_labels = torch.LongTensor([0, 1, 2, 3])
instance_data.det_scores = torch.Tensor([0.01, 0.1, 0.2, 0.3])
print(instance_data)

<BaseDataElement(

 META INFORMATION
 pad_shape: (800, 1216, 3)
 img_shape: (800, 1196, 3)

 DATA FIELDS
 det_labels: tensor([0, 1, 2, 3])
 det_scores: tensor([0.0100, 0.1000, 0.2000, 0.3000])
) at 0x7f9f339f85b0>

xxxData

MMEngine categorizes the data elements into three categories:

	InstanceData: mainly for high-level tasks that encapsulated all instance-related data in the image, such as bounding boxes, labels, instance masks, key points, polygons, tracking ids, etc. All instance-related data has the same length, which is the number of instances in the image.

	PixelData: mainly for low-level tasks and some high-level tasks that require pixel-level labels. It encapsulates pixel-level data such as segmentation map for semantic segmentations, flow map for optical flow tasks, panoptic segmentation map for panoramic segmentations, and various images generated by bottom-level tasks like super-resolution maps, denoising maps, and other various style maps generated. These data typically have three or four dimensions, with the last two dimensions representing the height and width of the data, which are consistent across the dataset.

	LabelData: mainly for encapsulating label-level data, such as class labels in image classification or multi-class classification, content categories for generated images in image generation, text in text recognition tasks, and more.

InstanceData

InstanceData builds upon BaseDataElement and introduces restrictions on the data stored in data, requiring that the length of the data is consistent. For example, in object detection, assuming an image has N objects (instances), you can store all the bounding boxes and labels in InstanceData, where the lengths of bounding boxes and label in InstanceData are the same. Based on this assumption, InstanceData is extended to include the following features:

	length validation of the data stored in InstanceData’s data.

	support for dictionary-like access and assignment of attributes in the data.

	support for basic indexing, slicing, and advanced indexing capabilities.

	support for concatenation of InstanceData with the same keys but different instances.

These extended features support basic data structures such as torch.tensor, numpy.ndarray, list, str, and tuple, as well as custom data structures, as long as the custom data structure implements __len__, __getitem__, and cat methods.

Data verification

All data stored in InstanceData must have the same length.

from mmengine.structures import InstanceData
import torch
import numpy as np

img_meta = dict(img_shape=(800, 1196, 3), pad_shape=(800, 1216, 3))
instance_data = InstanceData(metainfo=img_meta)
instance_data.det_labels = torch.LongTensor([2, 3])
instance_data.det_scores = torch.Tensor([0.8, 0.7])
instance_data.bboxes = torch.rand((2, 4))
print('The length of instance_data is', len(instance_data)) # 2

instance_data.bboxes = torch.rand((3, 4))

The length of instance_data is 2
AssertionError: the length of values 3 is not consistent with the length of this :obj:`InstanceData` 2

Dictionary-like operations for accessing and setting attributes

InstanceData supports dictionary-like operations on data attributes.

img_meta = dict(img_shape=(800, 1196, 3), pad_shape=(800, 1216, 3))
instance_data = InstanceData(metainfo=img_meta)
instance_data["det_labels"] = torch.LongTensor([2, 3])
instance_data["det_scores"] = torch.Tensor([0.8, 0.7])
instance_data.bboxes = torch.rand((2, 4))
print(instance_data)

<InstanceData(

 META INFORMATION
 pad_shape: (800, 1216, 3)
 img_shape: (800, 1196, 3)

 DATA FIELDS
 det_labels: tensor([2, 3])
 det_scores: tensor([0.8000, 0.7000])
 bboxes: tensor([[0.6576, 0.5435, 0.5253, 0.8273],
 [0.4533, 0.6848, 0.7230, 0.9279]])
) at 0x7f9f339f8ca0>

Indexing and slicing

InstanceData supports the list indexing and slicing operations similar to Python, meanwhile, it also supports advanced indexing operations like numpy.

img_meta = dict(img_shape=(800, 1196, 3), pad_shape=(800, 1216, 3))
instance_data = InstanceData(metainfo=img_meta)
instance_data.det_labels = torch.LongTensor([2, 3])
instance_data.det_scores = torch.Tensor([0.8, 0.7])
instance_data.bboxes = torch.rand((2, 4))
print(instance_data)

<InstanceData(

 META INFORMATION
 pad_shape: (800, 1216, 3)
 img_shape: (800, 1196, 3)

 DATA FIELDS
 det_labels: tensor([2, 3])
 det_scores: tensor([0.8000, 0.7000])
 bboxes: tensor([[0.1872, 0.1669, 0.7563, 0.8777],
 [0.3421, 0.7104, 0.6000, 0.1518]])
) at 0x7f9f312b4dc0>

	Indexing

print(instance_data[1])

<InstanceData(

 META INFORMATION
 pad_shape: (800, 1216, 3)
 img_shape: (800, 1196, 3)

 DATA FIELDS
 det_labels: tensor([3])
 det_scores: tensor([0.7000])
 bboxes: tensor([[0.3421, 0.7104, 0.6000, 0.1518]])
) at 0x7f9f312b4610>

	Slicing

print(instance_data[0:1])

<InstanceData(

 META INFORMATION
 pad_shape: (800, 1216, 3)
 img_shape: (800, 1196, 3)

 DATA FIELDS
 det_labels: tensor([2])
 det_scores: tensor([0.8000])
 bboxes: tensor([[0.1872, 0.1669, 0.7563, 0.8777]])
) at 0x7f9f312b4e20>

	Advanced indexing

	list indexing

sorted_results = instance_data[instance_data.det_scores.sort().indices]
print(sorted_results)

<InstanceData(

 META INFORMATION
 pad_shape: (800, 1216, 3)
 img_shape: (800, 1196, 3)

 DATA FIELDS
 det_labels: tensor([3, 2])
 det_scores: tensor([0.7000, 0.8000])
 bboxes: tensor([[0.3421, 0.7104, 0.6000, 0.1518],
 [0.1872, 0.1669, 0.7563, 0.8777]])
) at 0x7f9f312b4a90>

	bool indexing

filter_results = instance_data[instance_data.det_scores > 0.75]
print(filter_results)

<InstanceData(

 META INFORMATION
 pad_shape: (800, 1216, 3)
 img_shape: (800, 1196, 3)

 DATA FIELDS
 det_labels: tensor([2])
 det_scores: tensor([0.8000])
 bboxes: tensor([[0.1872, 0.1669, 0.7563, 0.8777]])
) at 0x7fa061299dc0>

	result is empty

empty_results = instance_data[instance_data.det_scores > 1]
print(empty_results)

<InstanceData(

 META INFORMATION
 pad_shape: (800, 1216, 3)
 img_shape: (800, 1196, 3)

 DATA FIELDS
 det_labels: tensor([], dtype=torch.int64)
 det_scores: tensor([])
 bboxes: tensor([], size=(0, 4))
) at 0x7f9f439cccd0>

Concatenate data

Users can concatenate two InstanceData with the same key into one new InstanceData. For two different InstanceData with different length as N and M, the length of the output InstanceData is N + M.

img_meta = dict(img_shape=(800, 1196, 3), pad_shape=(800, 1216, 3))
instance_data = InstanceData(metainfo=img_meta)
instance_data.det_labels = torch.LongTensor([2, 3])
instance_data.det_scores = torch.Tensor([0.8, 0.7])
instance_data.bboxes = torch.rand((2, 4))
print('The length of instance_data is', len(instance_data))
cat_results = InstanceData.cat([instance_data, instance_data])
print('The length of instance_data is', len(cat_results))
print(cat_results)

The length of instance_data is 2
The length of instance_data is 4
<InstanceData(

 META INFORMATION
 pad_shape: (800, 1216, 3)
 img_shape: (800, 1196, 3)

 DATA FIELDS
 det_labels: tensor([2, 3, 2, 3])
 det_scores: tensor([0.8000, 0.7000, 0.8000, 0.7000])
 bboxes: tensor([[0.5341, 0.8962, 0.9043, 0.2824],
 [0.3864, 0.2215, 0.7610, 0.7060],
 [0.5341, 0.8962, 0.9043, 0.2824],
 [0.3864, 0.2215, 0.7610, 0.7060]])
) at 0x7fa061d4a9d0>

Customize data structures

Users need to implement __len__, __getitem__, and cat in their customized data structures to achieve the above functions.

import itertools

class TmpObject:
 def __init__(self, tmp) -> None:
 assert isinstance(tmp, list)
 self.tmp = tmp

 def __len__(self):
 return len(self.tmp)

 def __getitem__(self, item):
 if type(item) == int:
 if item >= len(self) or item < -len(self): # type:ignore
 raise IndexError(f'Index {item} out of range!')
 else:
 # keep the dimension
 item = slice(item, None, len(self))
 return TmpObject(self.tmp[item])

 @staticmethod
 def cat(tmp_objs):
 assert all(isinstance(results, TmpObject) for results in tmp_objs)
 if len(tmp_objs) == 1:
 return tmp_objs[0]
 tmp_list = [tmp_obj.tmp for tmp_obj in tmp_objs]
 tmp_list = list(itertools.chain(*tmp_list))
 new_data = TmpObject(tmp_list)
 return new_data

 def __repr__(self):
 return str(self.tmp)

img_meta = dict(img_shape=(800, 1196, 3), pad_shape=(800, 1216, 3))
instance_data = InstanceData(metainfo=img_meta)
instance_data.det_labels = torch.LongTensor([2, 3])
instance_data["det_scores"] = torch.Tensor([0.8, 0.7])
instance_data.bboxes = torch.rand((2, 4))
instance_data.polygons = TmpObject([[1, 2, 3, 4], [5, 6, 7, 8]])
print(instance_data)

<InstanceData(

 META INFORMATION
 pad_shape: (800, 1216, 3)
 img_shape: (800, 1196, 3)

 DATA FIELDS
 det_labels: tensor([2, 3])
 polygons: [[1, 2, 3, 4], [5, 6, 7, 8]]
 det_scores: tensor([0.8000, 0.7000])
 bboxes: tensor([[0.4207, 0.0778, 0.9959, 0.1967],
 [0.4679, 0.7934, 0.5372, 0.4655]])
) at 0x7fa061b5d2b0>

advanced indexing
print(instance_data[instance_data.det_scores > 0.75])

<InstanceData(

 META INFORMATION
 pad_shape: (800, 1216, 3)
 img_shape: (800, 1196, 3)

 DATA FIELDS
 bboxes: tensor([[0.4207, 0.0778, 0.9959, 0.1967]])
 det_labels: tensor([2])
 det_scores: tensor([0.8000])
 polygons: [[1, 2, 3, 4]]
) at 0x7f9f312716d0>

cat
print(InstanceData.cat([instance_data, instance_data]))

<InstanceData(

 META INFORMATION
 pad_shape: (800, 1216, 3)
 img_shape: (800, 1196, 3)

 DATA FIELDS
 bboxes: tensor([[0.4207, 0.0778, 0.9959, 0.1967],
 [0.4679, 0.7934, 0.5372, 0.4655],
 [0.4207, 0.0778, 0.9959, 0.1967],
 [0.4679, 0.7934, 0.5372, 0.4655]])
 det_labels: tensor([2, 3, 2, 3])
 det_scores: tensor([0.8000, 0.7000, 0.8000, 0.7000])
 polygons: [[1, 2, 3, 4], [5, 6, 7, 8], [1, 2, 3, 4], [5, 6, 7, 8]]
) at 0x7f9f31271490>

PixelData

PixelData upon BaseDataElement and imposes restrictions on the stored data:

	All data must be three-dimension in the order of (Channel, Height, and Width).

	All data must have the same length and width.

MMEngine extends the PixelData according to these assumptions, including:

	Dimension validation on data stored

	Support indexing and slicing the data in spatial dimension

Data verification

PixelData checks the length and dimensions of all the data passed to it.

from mmengine.structures import PixelData
import random
import torch
import numpy as np
metainfo = dict(
 img_id=random.randint(0, 100),
 img_shape=(random.randint(400, 600), random.randint(400, 600)))
image = np.random.randint(0, 255, (4, 20, 40))
featmap = torch.randint(0, 255, (10, 20, 40))
pixel_data = PixelData(metainfo=metainfo,
 image=image,
 featmap=featmap)
print('The shape of pixel_data is', pixel_data.shape)
set
pixel_data.map3 = torch.randint(0, 255, (20, 40))
print('The shape of pixel_data is', pixel_data.map3.shape)

The shape of pixel_data is (20, 40)
The shape of pixel_data is torch.Size([1, 20, 40])

pixel_data.map2 = torch.randint(0, 255, (3, 20, 30))
AssertionError: the height and width of values (20, 30) is not consistent with the length of this :obj:`PixelData` (20, 40)

AssertionError: the height and width of values (20, 30) is not consistent with the length of this :obj:`PixelData` (20, 40)

pixel_data.map2 = torch.randint(0, 255, (1, 3, 20, 40))
AssertionError: The dim of value must be 2 or 3, but got 4

AssertionError: The dim of value must be 2 or 3, but got 4

Querying in spatial dimension

PixelData supports indexing and slicing in spatial dimension on part of the data instances. Users only need to pass in the index of the length and width.

metainfo = dict(
 img_id=random.randint(0, 100),
 img_shape=(random.randint(400, 600), random.randint(400, 600)))
image = np.random.randint(0, 255, (4, 20, 40))
featmap = torch.randint(0, 255, (10, 20, 40))
pixel_data = PixelData(metainfo=metainfo,
 image=image,
 featmap=featmap)
print('The shape of pixel_data is: ', pixel_data.shape)

The shape of pixel_data is (20, 40)

	Indexing

index_data = pixel_data[10, 20]
print('The shape of index_data is: ', index_data.shape)

The shape of index_data is (1, 1)

	Slicing

slice_data = pixel_data[10:20, 20:40]
print('The shape of slice_data is: ', slice_data.shape)

The shape of slice_data is (10, 20)

LabelData

LabelData is mainly used to encapsulate label data such as classiciation labels, predicted text labels, etc. LabelData has no limitations to data, and it provides two extra features: onehot transformation and index transformation.

from mmengine.structures import LabelData
import torch

item = torch.tensor([1], dtype=torch.int64)
num_classes = 10

onehot = LabelData.label_to_onehot(label=item, num_classes=num_classes)
print(f'{num_classes} is convert to ', onehot)

index = LabelData.onehot_to_label(onehot=onehot)
print(f'{onehot} is convert to ', index)

10 is convert to tensor([0, 1, 0, 0, 0, 0, 0, 0, 0, 0])
tensor([0, 1, 0, 0, 0, 0, 0, 0, 0, 0]) is convert to tensor([1])

xxxDataSample

There may be different types of labels in one sample, for example, there may be both instance-level labels (Box) and pixel-level labels (SegMap) in one image. Therefore, we need to have a higher-level encapsulation on top of PixelData, InstanceData, and PixelData to represent the image-level labels. This layer is named XXXDataSample across the OpenMMLab series algorithms. In MMDet we have DetDataSample. All the labels are encapsulated in XXXDataSample during the training process, so different deep learning tasks can maintain a uniform data flow and data processing method.

Downstream library usage

We take MMDet as an example to illustrate the use of the DataSample in downstream libraries and its constraints and naming styles. MMDet defined DetDataSample and seven fields, which are:

	Annotation Information

	gt_instance (InstanceData): Instance annotation information includes the instance class, bounding box, etc. The type constraint is InstanceData.

	gt_panoptic_seg (PixelData): For panoptic segmentation annotation information, the required type is PixelData.

	gt_semantic_seg (PixelData): Semantic segmentation annotation information. The type constraint is PixelData.

	Prediction Results

	pred_instance (InstanceData): Instance prediction results include the instance class, bounding boxes, etc. The type constraint is InstanceData.

	pred_panoptic_seg (PixelData): Panoptic segmentation prediction results. The type constraint is PixelData.

	pred_semantic_seg (PixelData): Semantic segmentation prediction results. The type constraint is PixelData.

	Intermediate Results

	proposal (InstanceData): Mostly used for the RPN results in the two-stage algorithms. The type constraint is InstanceData.

from mmengine.structures import BaseDataElement
import torch

class DetDataSample(BaseDataElement):

 # annotation
 @property
 def gt_instances(self) -> InstanceData:
 return self._gt_instances

 @gt_instances.setter
 def gt_instances(self, value: InstanceData):
 self.set_field(value, '_gt_instances', dtype=InstanceData)

 @gt_instances.deleter
 def gt_instances(self):
 del self._gt_instances

 @property
 def gt_panoptic_seg(self) -> PixelData:
 return self._gt_panoptic_seg

 @gt_panoptic_seg.setter
 def gt_panoptic_seg(self, value: PixelData):
 self.set_field(value, '_gt_panoptic_seg', dtype=PixelData)

 @gt_panoptic_seg.deleter
 def gt_panoptic_seg(self):
 del self._gt_panoptic_seg

 @property
 def gt_sem_seg(self) -> PixelData:
 return self._gt_sem_seg

 @gt_sem_seg.setter
 def gt_sem_seg(self, value: PixelData):
 self.set_field(value, '_gt_sem_seg', dtype=PixelData)

 @gt_sem_seg.deleter
 def gt_sem_seg(self):
 del self._gt_sem_seg

 # prediction
 @property
 def pred_instances(self) -> InstanceData:
 return self._pred_instances

 @pred_instances.setter
 def pred_instances(self, value: InstanceData):
 self.set_field(value, '_pred_instances', dtype=InstanceData)

 @pred_instances.deleter
 def pred_instances(self):
 del self._pred_instances

 @property
 def pred_panoptic_seg(self) -> PixelData:
 return self._pred_panoptic_seg

 @pred_panoptic_seg.setter
 def pred_panoptic_seg(self, value: PixelData):
 self.set_field(value, '_pred_panoptic_seg', dtype=PixelData)

 @pred_panoptic_seg.deleter
 def pred_panoptic_seg(self):
 del self._pred_panoptic_seg

 # intermediate result
 @property
 def pred_sem_seg(self) -> PixelData:
 return self._pred_sem_seg

 @pred_sem_seg.setter
 def pred_sem_seg(self, value: PixelData):
 self.set_field(value, '_pred_sem_seg', dtype=PixelData)

 @pred_sem_seg.deleter
 def pred_sem_seg(self):
 del self._pred_sem_seg

 @property
 def proposals(self) -> InstanceData:
 return self._proposals

 @proposals.setter
 def proposals(self, value: InstanceData):
 self.set_field(value, '_proposals', dtype=InstanceData)

 @proposals.deleter
 def proposals(self):
 del self._proposals

Type constraint

DetDataSample is used in the following way. It will throw an error when the data type is invalid, for example, using torch.Tensor to define proposals instead of InstanceData.

data_sample = DetDataSample()

data_sample.proposals = InstanceData(data=dict(bboxes=torch.rand((5,4))))
print(data_sample)

<DetDataSample(

 META INFORMATION

 DATA FIELDS
 proposals: <InstanceData(

 META INFORMATION

 DATA FIELDS
 data:
 bboxes: tensor([[0.7513, 0.9275, 0.6169, 0.5581],
 [0.6019, 0.6861, 0.7915, 0.0221],
 [0.5977, 0.8987, 0.9541, 0.7877],
 [0.0309, 0.1680, 0.1374, 0.0556],
 [0.3842, 0.9965, 0.0747, 0.6546]])
) at 0x7f9f1c090310>
) at 0x7f9f1c090430>

data_sample.proposals = torch.rand((5, 4))

AssertionError: tensor([[0.4370, 0.1661, 0.0902, 0.8421],
 [0.4947, 0.1668, 0.0083, 0.1111],
 [0.2041, 0.8663, 0.0563, 0.3279],
 [0.7817, 0.1938, 0.2499, 0.6748],
 [0.4524, 0.8265, 0.4262, 0.2215]]) should be a <class 'mmengine.data.instance_data.InstanceData'> but got <class 'torch.Tensor'>

Simpify the interfaces

In this section, we use MMDetection to demonstrate how to migrate the abstract data interfaces to simplify the module and component interfaces. We suppose both DetDataSample and InstanceData have been implemented in MMDetection and MMEngine.

1. Simplify the module interface

Detector’s external interfaces can be significantly simplified and unified. In the training process of a single-stage detection and segmentation algorithm in MMDet 2.X, SingleStageDetector requires img, img_metas, gt_bboxes， gt_labels and gt_bboxes_ignore as the inputs, but SingleStageInstanceSegmentor requires gt_masks as well. This causes inconsistency in the training interface and affects flexibility.

class SingleStageDetector(BaseDetector):
 ...

 def forward_train(self,
 img,
 img_metas,
 gt_bboxes,
 gt_labels,
 gt_bboxes_ignore=None):

class SingleStageInstanceSegmentor(BaseDetector):
 ...

 def forward_train(self,
 img,
 img_metas,
 gt_masks,
 gt_labels,
 gt_bboxes=None,
 gt_bboxes_ignore=None,
 **kwargs):

In MMDet 3.X, the training interfaces of all the detectors can be unified as img and data_samples using DetDataSample. Different modules can use data_samples to encapsulate their own attributes.

class SingleStageDetector(BaseDetector):
 ...

 def forward_train(self,
 img,
 data_samples):

class SingleStageInstanceSegmentor(BaseDetector):
 ...

 def forward_train(self,
 img,
 data_samples):

2. Simplify the model interfaces

In MMDet 2.X, HungarianAssigner and MaskHungarianAssigner will be used to assign bboxes and instance segment information with annotated instances, respectively. The assignment logics of these two modules are the same, and the only differences are the interface and the calculation of the loss functions. However, this difference makes the code of HungarianAssigner cannot be directly used in MaskHungarianAssigner, which caused the redundancy.

class HungarianAssigner(BaseAssigner):

 def assign(self,
 bbox_pred,
 cls_pred,
 gt_bboxes,
 gt_labels,
 img_meta,
 gt_bboxes_ignore=None,
 eps=1e-7):

class MaskHungarianAssigner(BaseAssigner):

 def assign(self,
 cls_pred,
 mask_pred,
 gt_labels,
 gt_mask,
 img_meta,
 gt_bboxes_ignore=None,
 eps=1e-7):

In MMDet 3.X, InstanceData can encapsulate the bounding boxes, scores, and masks. With this, we can simplify the core parameters of HungarianAssigner to pred_instances, gt_instances, and gt_instances_ignore. This unifies the two assigners into one HungarianAssianger.

class HungarianAssigner(BaseAssigner):

 def assign(self,
 pred_instances,
 gt_instancess,
 gt_instances_ignore=None,
 eps=1e-7):

 Distribution Communication

Distribution Communication

In distributed training, different processes sometimes need to apply different logics depending on their ranks, local_ranks, etc.
They also need to communicate with each other and do synchronizations on data.
These demands rely on distributed communication.
PyTorch provides a set of basic distributed communication primitives.
Based on these primitives, MMEngine provides some higher level APIs to meet more diverse demands.
Using these APIs provided by MMEngine, modules can:

	ignore the differences between distributed/non-distributed environment

	deliver data in various types apart from Tensor

	ignore the frameworks or backends used for communication

These APIs are roughly categorized into 3 types:

	Initialization: init_dist for setting up distributed environment for the runner

	Query & control: functions including get_world_size for querying world_size, rank and other distributed information

	Collective communication: collective communication functions such as all_reduce

We will detail on these APIs in the following chapters.

Initialization

	init_dist: Launch function of distributed training. Currently it supports 3 launchers including pytorch, slurm and MPI. It also setup the given communication backends, defaults to NCCL.

If you need to change the runtime timeout (default=30 minutes) for distributed operations that take very long, you can specify a different timeout in your env_cfg configuration passing in Runner like this:

env_cfg = dict(
 cudnn_benchmark=True,
 mp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),
 dist_cfg=dict(backend='nccl', timeout=10800), # Sets the timeout to 3h (10800 seconds)
)
runner = Runner(xxx, env_cfg=env_cfg)

Query and control

The query and control functions are all argument free.
They can be used in both distributed and non-distributed environment.
Their functionalities are listed below:

	get_world_size: Returns the number of processes in current process group. Returns 1 when non-distributed

	get_rank: Returns the global rank of current process in current process group. Returns 0 when non-distributed

	get_backend: Returns the communication backends used by current process group. Returns None when non-distributed

	get_local_rank: Returns the local rank of current process in current process group. Returns 0 when non-distributed

	get_local_size: Returns the number of processes which are both in current process group and on the same machine as the current process. Returns 1 when non-distributed

	get_dist_info: Returns the world_size and rank of the current process group. Returns world_size = 1, rank = 0 when non-distributed

	is_main_process: Returns True if current process is rank 0 in current process group, otherwise False . Always returns True when non-distributed

	master_only: A function decorator. Functions decorated by master_only will only execute on rank 0 process.

	barrier: A synchronization primitive. Every process will hold until all processes in the current process group reach the same barrier location

Collective communication

Collective communication functions are used for data transfer between processes in the same process group.
We provide the following APIs based on PyTorch native functions including all_reduce, all_gather, gather, broadcast.
These APIs are compatible with non-distributed environment and support more data types apart from Tensor.

	all_reduce: AllReduce operation on Tensors in the current process group

	all_gather: AllGather operation on Tensors in the current process group

	gather: Gather Tensors in the current process group to a destinated rank

	broadcast: Broadcast a Tensor to all processes in the current process group

	sync_random_seed: Synchronize random seed between processes in the current process group

	broadcast_object_list: Broadcast a list of Python objects. It requires the object can be serialized by Pickle.

	all_reduce_dict: AllReduce operation on dict. It is based on broadcast and all_reduce.

	all_gather_object: AllGather operations on any Python object than can be serialized by Pickle. It is based on all_gather

	gather_object: Gather Python objects that can be serialized by Pickle

	collect_results: Unified API for collecting a list of data in current process group. It support both CPU and GPU communication

 Logging

Logging

Runner will produce a lot of logs during the running process, such as loss, iteration time, learning rate, etc. MMEngine implements a flexible logging system that allows us to choose different types of log statistical methods when configuring the runner. It could help us set/get the recorded log at any location in the code.

Flexible Logging System

Logging system is configured by passing a LogProcessor to the runner. If no log processor is passed, the runner will use the default log processor, which is equivalent to:

log_processor = dict(window_size=10, by_epoch=True, custom_cfg=None, num_digits=4)

The format of the output log is as follows:

import torch
import torch.nn as nn
from torch.utils.data import DataLoader

from mmengine.runner import Runner
from mmengine.model import BaseModel

train_dataset = [(torch.ones(1, 1), torch.ones(1, 1))] * 50
train_dataloader = DataLoader(train_dataset, batch_size=2)

class ToyModel(BaseModel):
 def __init__(self) -> None:
 super().__init__()
 self.linear = nn.Linear(1, 1)

 def forward(self, img, label, mode):
 feat = self.linear(img)
 loss1 = (feat - label).pow(2)
 loss2 = (feat - label).abs()
 return dict(loss1=loss1, loss2=loss2)

runner = Runner(
 model=ToyModel(),
 work_dir='tmp_dir',
 train_dataloader=train_dataloader,
 train_cfg=dict(by_epoch=True, max_epochs=1),
 optim_wrapper=dict(optimizer=dict(type='SGD', lr=0.01))
)
runner.train()

08/21 02:58:41 - mmengine - INFO - Epoch(train) [1][10/25] lr: 1.0000e-02 eta: 0:00:00 time: 0.0019 data_time: 0.0004 loss1: 0.8381 loss2: 0.9007 loss: 1.7388
08/21 02:58:41 - mmengine - INFO - Epoch(train) [1][20/25] lr: 1.0000e-02 eta: 0:00:00 time: 0.0029 data_time: 0.0010 loss1: 0.1978 loss2: 0.4312 loss: 0.6290

LogProcessor will output the log in the following format:

	The prefix of the log:

	epoch mode(by_epoch=True): Epoch(train) [{current_epoch}/{current_iteration}]/{dataloader_length}

	iteration mode(by_epoch=False): Iter(train) [{current_iteration}/{max_iteration}])

	Learning rate (lr): The learning rate of the last iteration.

	Time:

	time: The averaged time for inference of the last window_size iterations.

	data_time: The averaged time for loading data of the last window_size iterations.

	eta: The estimated time of arrival to finish the training.

	Loss: The averaged loss output by model of the last window_size iterations.

Note

window_size=10 by default.

The significant digits(num_digits) of the log is 4 by default.

Output the value of all custom logs at the last iteration by default.

Warning

log_processor outputs the epoch based log by default(by_epoch=True). To get an expected log matched with the train_cfg, we should set the same value for by_epoch in train_cfg and log_processor.

Based on the rules above, the code snippet will count the average value of the loss1 and the loss2 every 10 iterations.

If we want to count the global average value of loss1, we can set custom_cfg like this:

runner = Runner(
 model=ToyModel(),
 work_dir='tmp_dir',
 train_dataloader=train_dataloader,
 train_cfg=dict(by_epoch=True, max_epochs=1),
 optim_wrapper=dict(optimizer=dict(type='SGD', lr=0.01)),
 log_processor=dict(
 custom_cfg=[
 dict(data_src='loss1', # original loss name: loss1
 method_name='mean', # statistical method: mean
 window_size='global')]) # window_size: global
)
runner.train()

08/21 02:58:49 - mmengine - INFO - Epoch(train) [1][10/25] lr: 1.0000e-02 eta: 0:00:00 time: 0.0026 data_time: 0.0007 loss1: 0.7381 loss2: 0.8446 loss: 1.5827
08/21 02:58:49 - mmengine - INFO - Epoch(train) [1][20/25] lr: 1.0000e-02 eta: 0:00:00 time: 0.0030 data_time: 0.0012 loss1: 0.4521 loss2: 0.3939 loss: 0.5600

data_src means the original loss name, method_name means the statistic method, window_size means the window size of the statistic method. Since we want to count the global average value of loss1, we set window_size to global.

Currently, MMEngine supports the following statistical methods:

 	statistic method
 	arguments
 	function

 	mean
 	window_size
 	statistic the average log of the last `window_size`

 	min
 	window_size
 	statistic the minimum log of the last `window_size`

 	max
 	window_size
 	statistic the maximum log of the last `window_size`

 	current
 	/
 	statistic the latest

window_size mentioned above could be:

	int number: The window size of the statistic method.

	global: Equivalent to window_size=cur_iteration.

	epoch: Equivalent to window_size=len(dataloader).

If we want to statistic the average value of loss1 of the last 10 iterations, and also want to statistic the global average value of loss1. We need to set log_name additionally:

runner = Runner(
 model=ToyModel(),
 work_dir='tmp_dir',
 train_dataloader=train_dataloader,
 train_cfg=dict(by_epoch=True, max_epochs=1),
 optim_wrapper=dict(optimizer=dict(type='SGD', lr=0.01)),
 log_processor=dict(
 custom_cfg=[
 # log_name means the second name of loss1
 dict(data_src='loss1', log_name='loss1_global', method_name='mean', window_size='global')])
)
runner.train()

08/21 18:39:32 - mmengine - INFO - Epoch(train) [1][10/25] lr: 1.0000e-02 eta: 0:00:00 time: 0.0016 data_time: 0.0004 loss1: 0.1512 loss2: 0.3751 loss: 0.5264 loss1_global: 0.1512
08/21 18:39:32 - mmengine - INFO - Epoch(train) [1][20/25] lr: 1.0000e-02 eta: 0:00:00 time: 0.0051 data_time: 0.0036 loss1: 0.0113 loss2: 0.0856 loss: 0.0970 loss1_global: 0.0813

Similarly, we can also statistic the global/local maximum value of loss at the same time.

runner = Runner(
 model=ToyModel(),
 work_dir='tmp_dir',
 train_dataloader=train_dataloader,
 train_cfg=dict(by_epoch=True, max_epochs=1),
 optim_wrapper=dict(optimizer=dict(type='SGD', lr=0.01)),
 log_processor=dict(custom_cfg=[
 # statistic loss1 with the local maximum value
 dict(data_src='loss1',
 log_name='loss1_local_max',
 window_size=10,
 method_name='max'),
 # statistic loss1 with the global maximum value
 dict(
 data_src='loss1',
 log_name='loss1_global_max',
 method_name='max',
 window_size='global')
]))
runner.train()

08/21 03:17:26 - mmengine - INFO - Epoch(train) [1][10/25] lr: 1.0000e-02 eta: 0:00:00 time: 0.0021 data_time: 0.0006 loss1: 1.8495 loss2: 1.3427 loss: 3.1922 loss1_local_max: 2.8872 loss1_global_max: 2.8872
08/21 03:17:26 - mmengine - INFO - Epoch(train) [1][20/25] lr: 1.0000e-02 eta: 0:00:00 time: 0.0024 data_time: 0.0010 loss1: 0.5464 loss2: 0.7251 loss: 1.2715 loss1_local_max: 2.8872 loss1_global_max: 2.8872

More examples can be found in log_processor.

Customize log

The logging system could not only log the loss, lr, .etc but also collect and output the custom log. For example, if we want to statistic the intermediate loss:

from mmengine.logging import MessageHub

class ToyModel(BaseModel):

 def __init__(self) -> None:
 super().__init__()
 self.linear = nn.Linear(1, 1)

 def forward(self, img, label, mode):
 feat = self.linear(img)
 loss_tmp = (feat - label).abs()
 loss = loss_tmp.pow(2)

 message_hub = MessageHub.get_current_instance()
 # update the intermediate `loss_tmp` in the message hub
 message_hub.update_scalar('train/loss_tmp', loss_tmp.sum())
 return dict(loss=loss)

runner = Runner(
 model=ToyModel(),
 work_dir='tmp_dir',
 train_dataloader=train_dataloader,
 train_cfg=dict(by_epoch=True, max_epochs=1),
 optim_wrapper=dict(optimizer=dict(type='SGD', lr=0.01)),
 log_processor=dict(
 custom_cfg=[
 # statistic the loss_tmp with the averaged value
 dict(
 data_src='loss_tmp',
 window_size=10,
 method_name='mean')
]
)
)
runner.train()

08/21 03:40:31 - mmengine - INFO - Epoch(train) [1][10/25] lr: 1.0000e-02 eta: 0:00:00 time: 0.0026 data_time: 0.0008 loss_tmp: 0.0097 loss: 0.0000
08/21 03:40:31 - mmengine - INFO - Epoch(train) [1][20/25] lr: 1.0000e-02 eta: 0:00:00 time: 0.0028 data_time: 0.0013 loss_tmp: 0.0065 loss: 0.0000

The custom log will be recorded by updating the messagehub:

	Calling MessageHub.get_current_instance() to get the message of runner

	Calling MessageHub.update_scalar to update the custom log. The first argument means the log name with the mode prefix(train/val/test). The output log will only retain the log name without the mode prefix.

	Configure statistic method of loss_tmp in log_processor. If it is not configured, only the latest value of loss_tmp will be logged.

Export the debug log

Set log_level=DEBUG for runner, and the debug log will be exported to the work_dir:

runner = Runner(
 model=ToyModel(),
 work_dir='tmp_dir',
 train_dataloader=train_dataloader,
 log_level='DEBUG',
 train_cfg=dict(by_epoch=True, max_epochs=1),
 optim_wrapper=dict(optimizer=dict(type='SGD', lr=0.01)))
runner.train()

08/21 18:16:22 - mmengine - DEBUG - Get class `LocalVisBackend` from "vis_backend" registry in "mmengine"
08/21 18:16:22 - mmengine - DEBUG - An `LocalVisBackend` instance is built from registry, its implementation can be found in mmengine.visualization.vis_backend
08/21 18:16:22 - mmengine - DEBUG - Get class `RuntimeInfoHook` from "hook" registry in "mmengine"
08/21 18:16:22 - mmengine - DEBUG - An `RuntimeInfoHook` instance is built from registry, its implementation can be found in mmengine.hooks.runtime_info_hook
08/21 18:16:22 - mmengine - DEBUG - Get class `IterTimerHook` from "hook" registry in "mmengine"
...

Besides, logs of different ranks will be saved in debug mode if you are training your model with the shared storage. The hierarchy of the log is as follows:

./tmp
├── tmp.log
├── tmp_rank1.log
├── tmp_rank2.log
├── tmp_rank3.log
├── tmp_rank4.log
├── tmp_rank5.log
├── tmp_rank6.log
└── tmp_rank7.log
...
└── tmp_rank63.log

The log of Multiple machine with independent storage:

device: 0:
work_dir/
└── exp_name_logs
 ├── exp_name.log
 ├── exp_name_rank1.log
 ├── exp_name_rank2.log
 ├── exp_name_rank3.log
 ...
 └── exp_name_rank7.log

device: 7:
work_dir/
└── exp_name_logs
 ├── exp_name_rank56.log
 ├── exp_name_rank57.log
 ├── exp_name_rank58.log
 ...
 └── exp_name_rank63.log

 File IO

File IO

MMEngine implements a unified set of file reading and writing interfaces in fileio module. With the fileio module, we can use the same function to handle different file formats, such as json, yaml and pickle. Other file formats can also be easily extended.

The fileio module also supports reading and writing files from a variety of file storage backends, including disk, Petrel (for internal use), Memcached, LMDB, and HTTP.

Load and dump data

MMEngine provides a universal API for loading and dumping data, currently supported formats are json, yaml, and pickle.

Load from disk or dump to disk

from mmengine import load, dump

load data from a file
data = load('test.json')
data = load('test.yaml')
data = load('test.pkl')
load data from a file-like object
with open('test.json', 'r') as f:
 data = load(f, file_format='json')

dump data to a string
json_str = dump(data, file_format='json')

dump data to a file with a filename (infer format from file extension)
dump(data, 'out.pkl')

dump data to a file with a file-like object
with open('test.yaml', 'w') as f:
 data = dump(data, f, file_format='yaml')

Load from other backends or dump to other backends

from mmengine import load, dump

load data from a file
data = load('s3://bucket-name/test.json')
data = load('s3://bucket-name/test.yaml')
data = load('s3://bucket-name/test.pkl')

dump data to a file with a filename (infer format from file extension)
dump(data, 's3://bucket-name/out.pkl')

It is also very convenient to extend the API to support more file formats. All you need to do is to write a file handler inherited from BaseFileHandler and register it with one or several file formats.

from mmengine import register_handler, BaseFileHandler

To register multiple file formats, a list can be used as the argument.
@register_handler(['txt', 'log'])
@register_handler('txt')
class TxtHandler1(BaseFileHandler):

 def load_from_fileobj(self, file):
 return file.read()

 def dump_to_fileobj(self, obj, file):
 file.write(str(obj))

 def dump_to_str(self, obj, **kwargs):
 return str(obj)

Here is an example of PickleHandler:

from mmengine import BaseFileHandler
import pickle

class PickleHandler(BaseFileHandler):

 def load_from_fileobj(self, file, **kwargs):
 return pickle.load(file, **kwargs)

 def load_from_path(self, filepath, **kwargs):
 return super(PickleHandler, self).load_from_path(
 filepath, mode='rb', **kwargs)

 def dump_to_str(self, obj, **kwargs):
 kwargs.setdefault('protocol', 2)
 return pickle.dumps(obj, **kwargs)

 def dump_to_fileobj(self, obj, file, **kwargs):
 kwargs.setdefault('protocol', 2)
 pickle.dump(obj, file, **kwargs)

 def dump_to_path(self, obj, filepath, **kwargs):
 super(PickleHandler, self).dump_to_path(
 obj, filepath, mode='wb', **kwargs)

Load a text file as a list or dict

For example a.txt is a text file with 5 lines.

a
b
c
d
e

Load from disk

Use list_from_file to load the list from a.txt:

from mmengine import list_from_file

print(list_from_file('a.txt'))
['a', 'b', 'c', 'd', 'e']
print(list_from_file('a.txt', offset=2))
['c', 'd', 'e']
print(list_from_file('a.txt', max_num=2))
['a', 'b']
print(list_from_file('a.txt', prefix='/mnt/'))
['/mnt/a', '/mnt/b', '/mnt/c', '/mnt/d', '/mnt/e']

For example b.txt is a text file with 3 lines.

1 cat
2 dog cow
3 panda

Then use dict_from_file to load the dict from b.txt:

from mmengine import dict_from_file

print(dict_from_file('b.txt'))
{'1': 'cat', '2': ['dog', 'cow'], '3': 'panda'}
print(dict_from_file('b.txt', key_type=int))
{1: 'cat', 2: ['dog', 'cow'], 3: 'panda'}

Load from other backends

Use list_from_file to load the list from s3://bucket-name/a.txt:

from mmengine import list_from_file

print(list_from_file('s3://bucket-name/a.txt'))
['a', 'b', 'c', 'd', 'e']
print(list_from_file('s3://bucket-name/a.txt', offset=2))
['c', 'd', 'e']
print(list_from_file('s3://bucket-name/a.txt', max_num=2))
['a', 'b']
print(list_from_file('s3://bucket-name/a.txt', prefix='/mnt/'))
['/mnt/a', '/mnt/b', '/mnt/c', '/mnt/d', '/mnt/e']

Use dict_from_file to load the dict from s3://bucket-name/b.txt.

from mmengine import dict_from_file

print(dict_from_file('s3://bucket-name/b.txt'))
{'1': 'cat', '2': ['dog', 'cow'], '3': 'panda'}
print(dict_from_file('s3://bucket-name/b.txt', key_type=int))
{1: 'cat', 2: ['dog', 'cow'], 3: 'panda'}

Load and dump checkpoints

We can read the checkpoints from disk or internet in the following way:

import torch

filepath1 = '/path/of/your/checkpoint1.pth'
filepath2 = 'http://path/of/your/checkpoint3.pth'

read checkpoints from disk
checkpoint = torch.load(filepath1)
save checkpoints to disk
torch.save(checkpoint, filepath1)

read checkpoints from internet
checkpoint = torch.utils.model_zoo.load_url(filepath2)

In MMEngine, reading and writing checkpoints in different storage forms can be uniformly implemented with load_checkpoint and save_checkpoint:

from mmengine import load_checkpoint, save_checkpoint

filepath1 = '/path/of/your/checkpoint1.pth'
filepath2 = 's3://bucket-name/path/of/your/checkpoint1.pth'
filepath3 = 'http://path/of/your/checkpoint3.pth'

read checkpoints from disk
checkpoint = load_checkpoint(filepath1)
save checkpoints to disk
save_checkpoint(checkpoint, filepath1)

read checkpoints from s3
checkpoint = load_checkpoint(filepath2)
save checkpoints to s3
save_checkpoint(checkpoint, filepath2)

read checkpoints from internet
checkpoint = load_checkpoint(filepath3)

 Global manager (ManagerMixin)

Global manager (ManagerMixin)

During the training process, it is inevitable that we need to access some variables globally. Here are some examples:

	Accessing the logger in model to print some initialization information

	Accessing the Visualizer anywhere to visualize the predictions and feature maps.

	Accessing the scope in Registry to get the current scope.

In order to unify the mechanism to get the global variable built from different classes, MMEngine designs the ManagerMixin.

Interface introduction

	get_instance(name=’’, **kwargs): Create or get the instance by name.

	get_current_instance(): Get the currently built instance.

	instance_name: Get the name of the instance.

How to use

	Define a class inherited from ManagerMixin

from mmengine.utils import ManagerMixin

class GlobalClass(ManagerMixin):
 def __init__(self, name, value):
 super().__init__(name)
 self.value = value

Note

Subclasses of ManagerMixin must accept name argument in __init__. The name argument is used to identify the instance, and you can get the instance by get_instance(name).

	Instantiate the instance anywhere. let’s take the hook as an example:

from mmengine import Hook

class CustomHook(Hook):
 def before_run(self, runner):
 GlobalClass.get_instance('mmengine', value=50)
 GlobalClass.get_instance(runner.experiment_name, value=100)

GlobalClass.get_instance({name}) will first check whether the instance with the name {name} has been built. If not, it will build a new instance with the name {name}, otherwise it will return the existing instance. As the above example shows, when we call GlobalClass.get_instance('mmengine') at the first time, it will build a new instance with the name mmengine. Then we call GlobalClass.get_instance(runner.experiment_name), it will also build a new instance with a different name.

Here we build two instances for the convenience of the subsequent introduction of get_current_instance.

	Accessing the instance anywhere

import torch.nn as nn

class CustomModule(nn.Module):
 def forward(self, x):
 value = GlobalClass.get_current_instance().value
 # Since the name of the latest built instance is
 # `runner.experiment_name`, value will be 100.

 value = GlobalClass.get_instance('mmengine').value
 # The value of instance with the name mmengine is 50.

 value = GlobalClass.get_instance('mmengine', 1000).value
 # `mmengine` instance has been built, an error will be raised
 # if `get_instance` accepts other parameters.

We can get the instance with the specified name by get_instance(name), or get the currently built instance by get_current_instance anywhere.

Warning

If the instance with the specified name has already been built, get_instance will raise an error if it accepts its construct parameters.

 Use modules from other libraries

Use modules from other libraries

Based on MMEngine’s Registry and Config, users can build modules across libraries.
For example, use MMPretrain [https://github.com/open-mmlab/mmpretrain]’s backbones in MMDetection [https://github.com/open-mmlab/mmdetection], or MMDetection [https://github.com/open-mmlab/mmdetection]’s data transforms in MMRotate [https://github.com/open-mmlab/mmrotate], or using MMDetection [https://github.com/open-mmlab/mmdetection]’s detectors in MMTracking [https://github.com/open-mmlab/mmtracking].

Modules registered in the same registry tree can be called across libraries by adding the package name prefix before the module’s type in the config. Here are some common examples:

Use backbone across libraries

Taking the example of using MMPretrain’s ConvNeXt in MMDetection:

Firstly, adding the custom_imports field to the config to register the backbones of MMPretrain to the registry.

Secondly, adding the package name of MMPretrain mmpretrain to the type of the backbone as a prefix: mmpretrain.ConvNeXt

Use custom_imports to register mmpretrain models to the registry
custom_imports = dict(imports=['mmpretrain.models'], allow_failed_imports=False)

model = dict(
 type='MaskRCNN',
 data_preprocessor=dict(...),
 backbone=dict(
 type='mmpretrain.ConvNeXt', # Add mmpretrain prefix to enable cross-library mechanism
 arch='tiny',
 out_indices=[0, 1, 2, 3],
 drop_path_rate=0.4,
 layer_scale_init_value=1.0,
 gap_before_final_norm=False,
 init_cfg=dict(
 type='Pretrained',
 checkpoint=
 'https://download.openmmlab.com/mmclassification/v0/convnext/downstream/convnext-tiny_3rdparty_32xb128-noema_in1k_20220301-795e9634.pth',
 prefix='backbone.')),
 neck=dict(...),
 rpn_head=dict(...))

Use data transform across libraries

As with the example of backbone above, cross-library calls can be simply achieved by adding custom_imports and prefix in the config:

Use custom_imports to register mmdet transforms to the registry
custom_imports = dict(imports=['mmdet.datasets.transforms'], allow_failed_imports=False)

Add mmdet prefix to enable cross-library mechanism
train_pipeline=[
 dict(type='mmdet.LoadImageFromFile'),
 dict(type='mmdet.LoadAnnotations', with_bbox=True, box_type='qbox'),
 dict(type='ConvertBoxType', box_type_mapping=dict(gt_bboxes='rbox')),
 dict(type='mmdet.Resize', scale=(1024, 2014), keep_ratio=True),
 dict(type='mmdet.RandomFlip', prob=0.5),
 dict(type='mmdet.PackDetInputs')
]

Use detector across libraries

Using an algorithm from another library is a little bit complex.

An algorithm contains multiple submodules. Each submodule needs to add a prefix to its type. Take using MMDetection’s YOLOX in MMTracking as an example:

Use custom_imports to register mmdet models to the registry
custom_imports = dict(imports=['mmdet.models'], allow_failed_imports=False)

model = dict(
 type='mmdet.YOLOX',
 backbone=dict(type='mmdet.CSPDarknet', deepen_factor=1.33, widen_factor=1.25),
 neck=dict(
 type='mmdet.YOLOXPAFPN',
 in_channels=[320, 640, 1280],
 out_channels=320,
 num_csp_blocks=4),
 bbox_head=dict(
 type='mmdet.YOLOXHead', num_classes=1, in_channels=320, feat_channels=320),
 train_cfg=dict(assigner=dict(type='mmdet.SimOTAAssigner', center_radius=2.5)))

To prevent adding prefix to all of the submodules manually, the _scope_ keyword is introduced. When the _scope_ keyword is added to the config of a module, all submodules’ scope will be changed by the _scope_ keyword. Here is an example config:

Use custom_imports to register mmdet models to the registry
custom_imports = dict(imports=['mmdet.models'], allow_failed_imports=False)

model = dict(
 scope='mmdet', # use the _scope_ keyword to avoid adding prefix to all submodules
 type='YOLOX',
 backbone=dict(type='CSPDarknet', deepen_factor=1.33, widen_factor=1.25),
 neck=dict(
 type='YOLOXPAFPN',
 in_channels=[320, 640, 1280],
 out_channels=320,
 num_csp_blocks=4),
 bbox_head=dict(
 type='YOLOXHead', num_classes=1, in_channels=320, feat_channels=320),
 train_cfg=dict(assigner=dict(type='SimOTAAssigner', center_radius=2.5)))

These two examples are equivalent to each other.

If you want to know more about the registry and config, please refer to Config Tutorial and Registry Tutorial

 Test time augmentation

Test time augmentation

Test time augmentation (TTA) is a data augmentation strategy used during the testing phase. It involves applying various augmentations, such as flipping and scaling, to the same image and then merging the predictions of each augmented image to produce a more accurate prediction. To make it easier for users to use TTA, MMEngine provides BaseTTAModel class, which allows users to implement different TTA strategies by simply extending the BaseTTAModel class according to their needs.

The core implementation of TTA is usually divided into two parts:

	Data augmentation: This part is implemented in MMCV, see the api docs TestTimeAug [https://mmcv.readthedocs.io/en/2.x/api/generated/mmcv.transforms.TestTimeAug.html#mmcv.transforms.TestTimeAug] for more information.

	Merge the predictions: The subclasses of BaseTTAModel will merge the predictions of enhanced data in the test_step method to improve the accuracy of predictions.

Get started

A simple example of TTA is given in examples/test_time_augmentation.py [https://github.com/open-mmlab/mmengine/blob/main/examples/test_time_augmentation.py]

Prepare test time augmentation pipeline

BaseTTAModel needs to be used with TestTimeAug implemented in MMCV:

tta_pipeline = [
 dict(type='LoadImageFromFile'),
 dict(
 type='TestTimeAug',
 transforms=[
 [dict(type='Resize', img_scale=(1333, 800), keep_ratio=True)],
 [dict(type='RandomFlip', flip_ratio=0.),
 dict(type='RandomFlip', flip_ratio=1.)],
 [dict(type='PackXXXInputs', keys=['img'])],
])
]

The above data augmentation pipeline will first perform a scaling enhancement on the image, followed by 2 flipping enhancements (flipping and not flipping). Finally, the image is packaged into the final result using PackXXXInputs.

Define the merge strategy

Commonly, users only need to inherit BaseTTAModel and override the BaseTTAModel.merge_preds to merge the predictions of enhanced data. merge_preds accepts a list of enhanced batch data, and each element of the list means the enhanced single data of the batch.

The BaseTTAModel class requires inferencing on both flipped and unflipped images and then merges the results. The merge_preds method accepts a list where each element represents the results of applying data augmentation to a single element of the batch. For example, if batch_size is 3, and we flip each image in the batch as an augmentation, merge_preds would accept a parameter like the following:

`data_{i}_{j}` represents the result of applying the jth data augmentation to
the ith image in the batch. So, if batch_size is 3, i can take on values of
0, 1, and 2. If there are 2 augmentation methods
(such as flipping the image), then j can take on values of 0 and 1.
For example, data_2_1 would represent the result of applying the second
augmentation method (flipping) to the third image in the batch.

demo_results = [
 [data_0_0, data_0_1],
 [data_1_0, data_1_1],
 [data_2_0, data_2_1],
]

The merge_preds method will merge the predictions demo_results into single batch results. For example, if we want to merge multiple classification results:

class AverageClsScoreTTA(BaseTTAModel):
 def merge_preds(
 self,
 data_samples_list: List[List[ClsDataSample]],
) -> List[ClsDataSample]:

 merged_data_samples = []
 for data_samples in data_samples_list:
 merged_data_sample: ClsDataSample = data_samples[0].new()
 merged_score = sum(data_sample.pred_label.score
 for data_sample in data_samples) / len(data_samples)
 merged_data_sample.set_pred_score(merged_score)
 merged_data_samples.append(merged_data_sample)
 return merged_data_samples

The configuration file for the above example is as follows:

tta_model = dict(type='AverageClsScoreTTA')

Changes to test script

cfg.model = ConfigDict(**cfg.tta_model, module=cfg.model)
cfg.test_dataloader.dataset.pipeline = cfg.tta_pipeline

Advanced usage

In general, users who inherit the BaseTTAModel class only need to implement the merge_preds method to perform result fusion. However, for more complex cases, such as fusing the results of a multi-stage detector, it may be necessary to override the test_step method. This requires an understanding of the data flow in the BaseTTAModel class and its relationship with other components.

The relationship between BaseTTAModel and other components

The BaseTTAModel class acts as an intermediary between the DDPWrapper and Model classes. When the Runner.test() method is executed, it will first call DDPWrapper.test_step(), followed by TTAModel.test_step(), and finally model.test_step().

 Model Complexity Analysis

Model Complexity Analysis

We provide a tool to help with the complexity analysis for the network. We borrow the idea from the implementation of fvcore [https://github.com/facebookresearch/fvcore] to build this tool, and plan to support more custom operators in the future. Currently, it provides the interfaces to compute “FLOPs”, “Activations” and “Parameters”, of the given model, and supports printing the related information layer-by-layer in terms of network structure or table. The analysis tool provides both operator-level and module-level flop counts simultaneously. Please refer to Flop Count [https://github.com/facebookresearch/fvcore/blob/main/docs/flop_count.md] for implementation details of how to accurately measure the flops of one operator if interested.

Definition

The model complexity has three indicators, namely floating-point operations (FLOPs), activations, and parameters. Their definitions are as follows:

	FLOPs

Floating-point operations (FLOPs) is not a clearly defined indicator. Here, we refer to the description in detectron2 [https://detectron2.readthedocs.io/en/latest/modules/fvcore.html#fvcore.nn.FlopCountAnalysis], which defines a set of multiply-accumulate operations as 1 FLOP.

	Activations

Activation is used to measure the feature quantity produced from one layer.

	Parameters

The parameter count of a model.

For example, given an input size of inputs = torch.randn((1, 3, 10, 10)) and a convolutional layer conv = nn.Conv2d(in_channels=3, out_channels=10, kernel_size=3), if the output feature map size is (1, 10, 8, 8), then its FLOPs are 17280 = 10*8*8*3*3*3 (where 10*8*8 represents the output feature map size, and 3*3*3 represents the computation for each output), activations are 640 = 10*8*8, and the parameter count is 280 = 3*10*3*3 + 10 (where 3*10*3*3 represents the size of weights, and 10 represents the size of bias).

Usage

Model built with native nn.Module

Build a model

from torch import nn
from mmengine.analysis import get_model_complexity_info

return a dict of analysis results, including:
['flops', 'flops_str', 'activations', 'activations_str', 'params', 'params_str', 'out_table', 'out_arch']

class InnerNet(nn.Module):
 def __init__(self):
 super().__init__()
 self.fc1 = nn.Linear(10,10)
 self.fc2 = nn.Linear(10,10)
 def forward(self, x):
 return self.fc1(self.fc2(x))

class TestNet(nn.Module):
 def __init__(self):
 super().__init__()
 self.fc1 = nn.Linear(10,10)
 self.fc2 = nn.Linear(10,10)
 self.inner = InnerNet()
 def forward(self, x):
 return self.fc1(self.fc2(self.inner(x)))

input_shape = (1, 10)
model = TestNet()

analysis_results = get_model_complexity_info(model, input_shape)

The analysis_results returned by get_model_complexity_info is a dict, which contains the following keys:

	flops: number of total flops, e.g., 10000, 10000

	flops_str: with formatted string, e.g., 1.0G, 100M

	params: number of total parameters, e.g., 10000, 10000

	params_str: with formatted string, e.g., 1.0G, 100M

	activations: number of total activations, e.g., 10000, 10000

	activations_str: with formatted string, e.g., 1.0G, 100M

	out_table: print related information by table

Print the results

	print related information by table

print(analysis_results['out_table'])

+---------------------+----------------------+--------+--------------+
| module | #parameters or shape | #flops | #activations |
+---------------------+----------------------+--------+--------------+
model	0.44K	0.4K	40
fc1	0.11K	100	10
fc1.weight	(10, 10)		
fc1.bias	(10,)		
fc2	0.11K	100	10
fc2.weight	(10, 10)		
fc2.bias	(10,)		
inner	0.22K	0.2K	20
inner.fc1	0.11K	100	10
inner.fc1.weight	(10, 10)		
inner.fc1.bias	(10,)		
inner.fc2	0.11K	100	10
inner.fc2.weight	(10, 10)		
inner.fc2.bias	(10,)		
+---------------------+----------------------+--------+--------------+

	print related information by network layers

print(analysis_results['out_arch'])

TestNet(
 #params: 0.44K, #flops: 0.4K, #acts: 40
 (fc1): Linear(
 in_features=10, out_features=10, bias=True
 #params: 0.11K, #flops: 100, #acts: 10
)
 (fc2): Linear(
 in_features=10, out_features=10, bias=True
 #params: 0.11K, #flops: 100, #acts: 10
)
 (inner): InnerNet(
 #params: 0.22K, #flops: 0.2K, #acts: 20
 (fc1): Linear(
 in_features=10, out_features=10, bias=True
 #params: 0.11K, #flops: 100, #acts: 10
)
 (fc2): Linear(
 in_features=10, out_features=10, bias=True
 #params: 0.11K, #flops: 100, #acts: 10
)
)
)

	print results with formatted string

print("Model Flops:{}".format(analysis_results['flops_str']))
Model Flops:0.4K
print("Model Parameters:{}".format(analysis_results['params_str']))
Model Parameters:0.44K

Model built with mmengine

import torch.nn.functional as F
import torchvision
from mmengine.model import BaseModel
from mmengine.analysis import get_model_complexity_info

class MMResNet50(BaseModel):
 def __init__(self):
 super().__init__()
 self.resnet = torchvision.models.resnet50()

 def forward(self, imgs, labels=None, mode='tensor'):
 x = self.resnet(imgs)
 if mode == 'loss':
 return {'loss': F.cross_entropy(x, labels)}
 elif mode == 'predict':
 return x, labels
 elif mode == 'tensor':
 return x

input_shape = (3, 224, 224)
model = MMResNet50()

analysis_results = get_model_complexity_info(model, input_shape)

print("Model Flops:{}".format(analysis_results['flops_str']))
Model Flops:4.145G
print("Model Parameters:{}".format(analysis_results['params_str']))
Model Parameters:25.557M

Interface

We provide more options to support custom output

	model: (nn.Module) the model to be analyzed

	input_shape: (tuple) the shape of the input, e.g., (3, 224, 224)

	inputs: (optional: torch.Tensor), if given, input_shape will be ignored

	show_table: (bool) whether return the statistics in the form of table, default: True

	show_arch: (bool) whether return the statistics by network layers, default: True

 Hook

Hook

Hook programming is a programming pattern in which a mount point is set in one or more locations of a program. When the program runs to a mount point, all methods registered to it at runtime are automatically called. Hook programming can increase the flexibility and extensibility of the program since users can register custom methods to the mount point to be called without modifying the code in the program.

Examples

Here is an example of how it works.

pre_hooks = [(print, 'hello')]
post_hooks = [(print, 'goodbye')]

def main():
 for func, arg in pre_hooks:
 func(arg)
 print('do something here')
 for func, arg in post_hooks:
 func(arg)

main()

Output of the above example.

hello
do something here
goodbye

As we can see, the main function calls print defined in hooks in two locations without making any changes.

Hook is also used everywhere in PyTorch, for example in the neural network module (nn.Module) to get the forward input and output of the module as well as the reverse input and output. For example, the register_forward_hook [https://pytorch.org/docs/stable/generated/torch.nn.Module.html#torch.nn.Module.register_forward_hook] method registers a forward hook with the module, and the hook can get the forward input and output of the module.

The following is an example of the register_forward_hook usage.

import torch
import torch.nn as nn

def forward_hook_fn(
 module, # object to be registered hooks
 input, # forward input of module
 output, # forward output of module
):
 print(f'"forward_hook_fn" is invoked by {module.name}')
 print('weight:', module.weight.data)
 print('bias:', module.bias.data)
 print('input:', input)
 print('output:', output)

class Model(nn.Module):
 def __init__(self):
 super().__init__()
 self.fc = nn.Linear(3, 1)

 def forward(self, x):
 y = self.fc(x)
 return y

model = Model()
Register forward_hook_fn to each submodule of model
for module in model.children():
 module.register_forward_hook(forward_hook_fn)

x = torch.Tensor([[0.0, 1.0, 2.0]])
y = model(x)

Output of the above example.

"forward_hook_fn" is invoked by Linear(in_features=3, out_features=1, bias=True)
weight: tensor([[-0.4077, 0.0119, -0.3606]])
bias: tensor([-0.2943])
input: (tensor([[0., 1., 2.]]),)
output: tensor([[-1.0036]], grad_fn=<AddmmBackward>)

We can see that the forward_hook_fn hook registered to the nn.Linear module is called, and in that hook the weights, biases, module inputs, and outputs of the Linear module are printed. For more information on the use of PyTorch hooks you can read nn.Module [https://pytorch.org/docs/stable/generated/torch.nn.Module.html].

Design on MMEngine

Before introducing the design of the Hook in MMEngine, let’s briefly introduce the basic steps of model training using PyTorch (copied from PyTorch Tutorials [https://pytorch.org/tutorials/beginner/blitz/cifar10_tutorial.html#sphx-glr-beginner-blitz-cifar10-tutorial-py]).

import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.optim as optim
import torchvision.transforms as transforms
from torch.utils.data import Dataset, DataLoader

class CustomDataset(Dataset):
 pass

class Net(nn.Module):
 pass

def main():
 transform = transforms.ToTensor()
 train_dataset = CustomDataset(transform=transform, ...)
 val_dataset = CustomDataset(transform=transform, ...)
 test_dataset = CustomDataset(transform=transform, ...)
 train_dataloader = DataLoader(train_dataset, ...)
 val_dataloader = DataLoader(val_dataset, ...)
 test_dataloader = DataLoader(test_dataset, ...)

 net = Net()
 criterion = nn.CrossEntropyLoss()
 optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)

 for i in range(max_epochs):
 for inputs, labels in train_dataloader:
 optimizer.zero_grad()
 outputs = net(inputs)
 loss = criterion(outputs, labels)
 loss.backward()
 optimizer.step()

 with torch.no_grad():
 for inputs, labels in val_dataloader:
 outputs = net(inputs)
 loss = criterion(outputs, labels)

 with torch.no_grad():
 for inputs, labels in test_dataloader:
 outputs = net(inputs)
 accuracy = ...

The above pseudo-code is the basic step to train a model. If we want to add custom operations to the above code, we need to modify and extend the main function continuously. To increase the flexibility and extensibility of the main function, we can insert mount points into the main function and implement the logic of calling hooks at the corresponding mount points. In this case, we only need to insert hooks into these locations to implement custom logic, such as loading model weights, updating model parameters, etc.

def main():
 ...
 call_hooks('before_run', hooks)
 call_hooks('after_load_checkpoint', hooks)
 call_hooks('before_train', hooks)
 for i in range(max_epochs):
 call_hooks('before_train_epoch', hooks)
 for inputs, labels in train_dataloader:
 call_hooks('before_train_iter', hooks)
 outputs = net(inputs)
 loss = criterion(outputs, labels)
 call_hooks('after_train_iter', hooks)
 loss.backward()
 optimizer.step()
 call_hooks('after_train_epoch', hooks)

 call_hooks('before_val_epoch', hooks)
 with torch.no_grad():
 for inputs, labels in val_dataloader:
 call_hooks('before_val_iter', hooks)
 outputs = net(inputs)
 loss = criterion(outputs, labels)
 call_hooks('after_val_iter', hooks)
 call_hooks('after_val_epoch', hooks)

 call_hooks('before_save_checkpoint', hooks)
 call_hooks('after_train', hooks)

 call_hooks('before_test_epoch', hooks)
 with torch.no_grad():
 for inputs, labels in test_dataloader:
 call_hooks('before_test_iter', hooks)
 outputs = net(inputs)
 accuracy = ...
 call_hooks('after_test_iter', hooks)
 call_hooks('after_test_epoch', hooks)

 call_hooks('after_run', hooks)

In MMEngine, we encapsulates the training process into an executor (Runner). The Runner calls hooks at specific mount points to complete the customization logic. For more information about Runner, please read the Runner documentation.

To facilitate management, MMEngine defines mount points as methods and integrates them into Base Hook. We just need to inherit the base hook and implement custom logic at specific location according to our needs, then register the hooks to the Runner. Those hooks will be called automatically.

There are 22 mount points in the Base Hook.

	before_run

	after_run

	before_train

	after_train

	before_train_epoch

	after_train_epoch

	before_train_iter

	after_train_iter

	before_val

	after_val

	before_test_epoch

	after_test_epoch

	before_val_iter

	after_val_iter

	before_test

	after_test

	before_test_epoch

	after_test_epoch

	before_test_iter

	after_test_iter

	before_save_checkpoint

	after_load_checkpoint

Further readings: Hook tutorial and Hook API documentations

 Runner

Runner

Deep learning algorithms usually share similar pipelines for training, validation and testing.
Therefore, MMengine designed Runner to simplify the construction of these pipelines.
In most cases, users can use our default Runner directly.
If you find it not feasible to implement your ideas, you can also modify it or customize your own runner.

Before introducing the design of Runner, let’s walk through some examples to better understand why we should use runner.
Below is a few lines of pseudo codes for training models in PyTorch:

model = ResNet()
optimizer = SGD(model.parameters(), lr=0.01, momentum=0.9)
train_dataset = ImageNetDataset(...)
train_dataloader = DataLoader(train_dataset, ...)

for i in range(max_epochs):
 for data_batch in train_dataloader:
 optimizer.zero_grad()
 outputs = model(data_batch)
 loss = loss_func(outputs, data_batch)
 loss.backward()
 optimizer.step()

Pseudo codes for model validation in PyTorch:

model = ResNet()
model.load_state_dict(torch.load(CKPT_PATH))
model.eval()

test_dataset = ImageNetDataset(...)
test_dataloader = DataLoader(test_dataset, ...)

for data_batch in test_dataloader:
 outputs = model(data_batch)
 acc = calculate_acc(outputs, data_batch)

Pseudo codes for model inference in PyTorch:

model = ResNet()
model.load_state_dict(torch.load(CKPT_PATH))
model.eval()

for img in imgs:
 prediction = model(img)

The observation from the above 3 pieces of codes is that they are similar.
They can all be divided into some distinct steps, such as model construction, data loading and loop iterations.
Although the above examples are based on image classification tasks, the same holds for many other tasks as well, including object detection, image segmentation, etc.
Based on the observation above, we propose runner, which structures the training, validation and testing pipeline.
With runner, the only thing you need to do is to prepare necessary components (models, data, etc.) of your pipeline, and leave the schedule and execution to Runner.
You are free of constructing similar pipelines one and another time.
You are free of annoying details like the differences between distributed and non-distributed training.
You can focus on your own awesome ideas.
These are all achieved by runner and various practical modules in MMEngine.

[image: Runner]

The Runner in MMEngine contains various modules required for training, testing and validation, as well as loop controllers(Loop) and Hook, as shown in the figure above.
It provides 3 APIs for users: train, val and test, each correspond to a specific Loop.
You can use Runner either by providing a config file, or by providing manually constructed modules.
Once activated, the Runner will automatically setup the runtime environment, build/compose your modules, execute the loop iterations in Loop and call registered hooks during iterations.

The execution order of Runner is as follows:

[image: runner_flow]

A feature of Runner is that it will always lazily initialize modules managed by itself.
To be specific, Runner won’t build every module on initialization, and it won’t build a module until it is needed in current Loop.
Therefore, if you are running only one of the train, val, or test pipelines, you only need to provide the relevant configs/modules.

Loop

In MMEngine, we abstract the execution process of the task into Loop, based on the observation that most deep learning tasks can be summarized as a model iterating over datasets.
We provide 4 built-in loops in MMEngine:

	EpochBasedTrainLoop

	IterBasedTrainLoop

	ValLoop

	TestLoop

[image: Loop]

The built-in runner and loops are capable of most deep learning tasks, but surely not all.
Some tasks need extra modifications and refactorizations.
Therefore, we make it possible for users to customize their own pipelines for model training, validation and testing.

You can write your own pipeline by subclassing BaseLoop, which needs 2 arguments for initialization: 1) runner the Runner instance, and 2) dataloader the dataloader used in this loop.
You are free to add more arguments to your own loop subclass.
After defining your own loop subclass, you should register it to LOOPS(mmengine.registry.LOOPS), and specify it in config files by type field in train_cfg, val_cfg and test_cfg.
In fact, you can write any execution order, any hook position in your own loop.
However, built-in hooks may not work if you change hook positions, which may lead to inconsistent behavior during training.
Therefore, we strongly recommend you to implement you subclass with similar execution order illustrated in the figure above, and with the same hook positions defined in hook documentation.

from mmengine.registry import LOOPS, HOOKS
from mmengine.runner import BaseLoop
from mmengine.hooks import Hook

Customized validation loop
@LOOPS.register_module()
class CustomValLoop(BaseLoop):
 def __init__(self, runner, dataloader, evaluator, dataloader2):
 super().__init__(runner, dataloader, evaluator)
 self.dataloader2 = runner.build_dataloader(dataloader2)

 def run(self):
 self.runner.call_hooks('before_val_epoch')
 for idx, data_batch in enumerate(self.dataloader):
 self.runner.call_hooks(
 'before_val_iter', batch_idx=idx, data_batch=data_batch)
 outputs = self.run_iter(idx, data_batch)
 self.runner.call_hooks(
 'after_val_iter', batch_idx=idx, data_batch=data_batch, outputs=outputs)
 metric = self.evaluator.evaluate()

 # add extra loop for validation purpose
 for idx, data_batch in enumerate(self.dataloader2):
 # add new hooks
 self.runner.call_hooks(
 'before_valloader2_iter', batch_idx=idx, data_batch=data_batch)
 self.run_iter(idx, data_batch)
 # add new hooks
 self.runner.call_hooks(
 'after_valloader2_iter', batch_idx=idx, data_batch=data_batch, outputs=outputs)
 metric2 = self.evaluator.evaluate()

 ...

 self.runner.call_hooks('after_val_epoch')

Define a hook with extra hook positions
@HOOKS.register_module()
class CustomValHook(Hook):
 def before_valloader2_iter(self, batch_idx, data_batch):
 ...

 def after_valloader2_iter(self, batch_idx, data_batch, outputs):
 ...

The example above shows how to implement a different validation loop.
The new loop validates on two different validation datasets.
It also defines a new hook position in the second validation.
You can easily use it by setting type='CustomValLoop' in val_cfg in your config file.

Customized validation loop
val_cfg = dict(type='CustomValLoop', dataloader2=dict(dataset=dict(type='ValDataset2'), ...))
Customized hook with extra hook position
custom_hooks = [dict(type='CustomValHook')]

Customize Runner

Moreover, you can write your own runner by subclassing Runner if the built-in Runner is not feasible.
The method is similar to writing other modules: write your subclass inherited from Runner, overrides some functions, register it to mmengine.registry.RUNNERS and access it by assigning runner_type in your config file.

from mmengine.registry import RUNNERS
from mmengine.runner import Runner

@RUNNERS.register_module()
class CustomRunner(Runner):

 def setup_env(self):
 ...

The example above shows how to implement a customized runner which overrides the setup_env function and is registered to RUNNERS.
Now CustomRunner is prepared to be used by setting runner_type='CustomRunner' in your config file.

Further readings: Runner tutorial and Runner API documentations

 Evaluation

Evaluation

Evaluation metrics and evaluators

In model validation and model testing, it is often necessary to quantitatively evaluate the model’s performance. In MMEngine, Metric and Evaluator are implemented to achieve this function.

	Metric calculates specific model metrics based on test data and model prediction results. Common metrics for corresponding tasks are provided in each OpenMMLab algorithm library, e.g. Accuracy [https://mmpretrain.readthedocs.io/en/latest/api/generated/mmpretrain.evaluation.Accuracy.html#mmpretrain.evaluation.Accuracy] is provided in MMPreTrain [https://github.com/open-mmlab/mmpretrain] for calculating the Top-k classification accuracy of classification models; COCOMetric [https://github.com/open-mmlab/mmdetection/blob/main/mmdet/evaluation/metrics/coco_metric.py] is provided in MMDetection [https://github.com/open-mmlab/mmdetection] to calculate AP, AR, and other metrics for object detection models. The evaluation metrics are decoupled from the dataset, such as COCOMetric can also be used on non-COCO object detection datasets.

	Evaluator is an upper-level module for Metric, usually containing one or more metrics. The role of the evaluator is to perform necessary data format conversions during model evaluation and call evaluation metrics to calculate model accuracy. Evaluator is usually built from Runner or test scripts for online and offline evaluations, respectively.

BaseMetric

BaseMetric is an abstract class with the following initialization parameters:

	collect_device: device name used for synchronizing results in distributed evaluation, such as 'cpu' or 'gpu'.

	prefix: the prefix of the metric name which is used to distinguish multiple metrics with the same name. If this parameter is not given, then an attempt is made to use the class attribute default_prefix as the prefix.

class BaseMetric(metaclass=ABCMeta):

 default_prefix: Optional[str] = None

 def __init__(self,
 collect_device: str = 'cpu',
 prefix: Optional[str] = None) -> None:
 ...

BaseMetric has the following two important methods that need to be overridden in subclasses:

	process() is used to process the test data and model prediction results for each batch. The processing results should be stored in the self.results list, which will be used to calculate the metrics after processing all test data. This method has the following two parameters:

	data_batch: A sample of test data from a batch, usually directly from the dataloader

	data_samples: Corresponding model prediction results. This method has no return value. The function interface is defined as follows:

@abstractmethod
def process(self, data_batch: Any, data_samples: Sequence[dict]) -> None:
 """Process one batch of data samples and predictions. The processed
 results should be stored in ``self.results``, which will be used to
 compute the metrics when all batches have been processed.
 Args:
 data_batch (Any): A batch of data from the dataloader.
 data_samples (Sequence[dict]): A batch of outputs from the model.
 """

	compute_metrics() is used to calculate the metrics and return the metrics in a dictionary. This method has one parameter:

	results: list type, which holds the results of all batches of test data processed by the process() method. This method returns a dictionary that holds the names of the metrics and the corresponding values of the metrics. The function interface is defined as follows:

@abstractmethod
def compute_metrics(self, results: list) -> dict:
 """Compute the metrics from processed results.

 Args:
 results (list): The processed results of each batch.

 Returns:
 dict: The computed metrics. The keys are the names of the metrics,
 and the values are corresponding results.
 """

In this case, compute_metrics() is called in the evaluate() method; the latter collects and aggregates intermediate processing results of different ranks during the distributed testing before calculating the metrics.

Note that the content of self.results depends on the implementation of the subclasses. For example, when the amount of test samples or model output data is large (such as semantic segmentation, image generation, and other tasks) and it is not appropriate to store them all in memory, you can store the metrics computed by each batch in self.results and collect them in compute_metrics(); or store the intermediate results of each batch in a temporary file, and store the temporary file path in self .results, and then collect them in compute_metrics() by reading the data from the file and calculates the metrics.

Model evaluation process

Usually, the process of model accuracy evaluation is shown in the figure below.

Online evaluation: The test data is usually divided into batches. Through a loop, each batch is fed into the model in turn, yielding corresponding predictions, and the test data and model predictions are passed to the evaluator. The evaluator calls the process() method of the Metric to process the data and prediction results. When the loop ends, the evaluator calls the evaluate() method of the metrics to calculate the model accuracy of the corresponding metrics.

Offline evaluation: Similar to the online evaluation process, the difference is that the pre-saved model predictions are read directly to perform the evaluation. The evaluator provides the offline_evaluate interface for calling the Metrics to calculate the model accuracy in an offline way. In order to avoid memory overflow caused by processing a large amount of data at the same time, the offline evaluation divides the test data and prediction results into chunks for processing, similar to the batches in online evaluation.

Customize evaluation metrics

In each algorithm library of OpenMMLab, common evaluation metrics have been implemented in the corresponding tasks. For example, COCO metrics is provided in MMDetection and Accuracy, F1Score, etc. are provided in MMPreTrain.

Users can also add custom metrics. For details, please refer to the examples given in the tutorial documentation.

 Visualization

Visualization

1 Overall Design

Visualization provides an intuitive explanation of the training and testing process of the deep learning model. In OpenMML