Shortcuts

Visualize Training Logs

MMEngine integrates experiment management tools such as TensorBoard, Weights & Biases (WandB), MLflow and ClearML, making it easy to track and visualize metrics like loss and accuracy.

Below, we’ll show you how to configure an experiment management tool in just one line, based on the example from 15 minutes to get started with MMEngine.

TensorBoard

Configure the visualizer in the initialization parameters of the Runner, and set vis_backends to TensorboardVisBackend.

runner = Runner(
    model=MMResNet50(),
    work_dir='./work_dir',
    train_dataloader=train_dataloader,
    optim_wrapper=dict(optimizer=dict(type=SGD, lr=0.001, momentum=0.9)),
    train_cfg=dict(by_epoch=True, max_epochs=5, val_interval=1),
    val_dataloader=val_dataloader,
    val_cfg=dict(),
    val_evaluator=dict(type=Accuracy),
    visualizer=dict(type='Visualizer', vis_backends=[dict(type='TensorboardVisBackend')]),
)
runner.train()

WandB

Before using WandB, you need to install the wandb dependency library and log in to WandB.

pip install wandb
wandb login

Configure the visualizer in the initialization parameters of the Runner, and set vis_backends to WandbVisBackend.

runner = Runner(
    model=MMResNet50(),
    work_dir='./work_dir',
    train_dataloader=train_dataloader,
    optim_wrapper=dict(optimizer=dict(type=SGD, lr=0.001, momentum=0.9)),
    train_cfg=dict(by_epoch=True, max_epochs=5, val_interval=1),
    val_dataloader=val_dataloader,
    val_cfg=dict(),
    val_evaluator=dict(type=Accuracy),
    visualizer=dict(type='Visualizer', vis_backends=[dict(type='WandbVisBackend')]),
)
runner.train()

image

You can click on WandbVisBackend API to view the configurable parameters for WandbVisBackend. For example, the init_kwargs parameter will be passed to the wandb.init method.

runner = Runner(
    ...
    visualizer=dict(
        type='Visualizer',
        vis_backends=[
            dict(
                type='WandbVisBackend',
                init_kwargs=dict(project='toy-example')
            ),
        ],
    ),
    ...
)
runner.train()

MLflow (WIP)

ClearML

Before using ClearML, you need to install the clearml dependency library and refer to Connect ClearML SDK to the Server for configuration.

pip install clearml
clearml-init

Configure the visualizer in the initialization parameters of the Runner, and set vis_backends to ClearMLVisBackend.

runner = Runner(
    model=MMResNet50(),
    work_dir='./work_dir',
    train_dataloader=train_dataloader,
    optim_wrapper=dict(optimizer=dict(type=SGD, lr=0.001, momentum=0.9)),
    train_cfg=dict(by_epoch=True, max_epochs=5, val_interval=1),
    val_dataloader=val_dataloader,
    val_cfg=dict(),
    val_evaluator=dict(type=Accuracy),
    visualizer=dict(type='Visualizer', vis_backends=[dict(type='ClearMLVisBackend')]),
)
runner.train()

image

Read the Docs v: v0.7.4
Versions
latest
stable
v0.7.4
v0.7.3
v0.7.2
v0.7.1
v0.7.0
v0.6.0
v0.5.0
v0.4.0
v0.3.0
v0.2.0
Downloads
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.