mmengine.model.wrappers.fully_sharded_distributed 源代码
# Copyright (c) OpenMMLab. All rights reserved.
from functools import partial
from typing import Any, Callable, Dict, Iterable, List, Optional, Union
import torch
import torch.distributed as dist
import torch.nn as nn
from torch.distributed import ProcessGroup
# yapf: disable
from torch.distributed.fsdp.api import (FullStateDictConfig,
LocalOptimStateDictConfig,
LocalStateDictConfig,
OptimStateDictConfig,
ShardedOptimStateDictConfig,
ShardedStateDictConfig,
ShardingStrategy, StateDictConfig,
StateDictSettings, StateDictType)
from torch.distributed.fsdp.fully_sharded_data_parallel import (
BackwardPrefetch, CPUOffload, FullOptimStateDictConfig,
FullyShardedDataParallel, MixedPrecision)
# yapf: enable
from mmengine.optim import OptimWrapper
from mmengine.registry import FUNCTIONS, MODEL_WRAPPERS
from mmengine.structures import BaseDataElement
from mmengine.utils import digit_version, is_seq_of
[文档]@MODEL_WRAPPERS.register_module()
class MMFullyShardedDataParallel(FullyShardedDataParallel):
"""A wrapper for sharding Module parameters across data parallel workers.
Different from FullyShardedDataParallel, MMFullyShardedDataParallel
implements three methods :meth:`train_step`, :meth:`val_step` and
:meth:`test_step`, which will be called by ``train_loop``, ``val_loop``
and ``test_loop``.
- ``train_step``: Called by ``runner.train_loop``, and implement
default model forward, gradient back propagation, parameter updating
logic.
- ``val_step``: Called by ``runner.val_loop`` and get the inference
results. Specially, since MMFullyShardedDataParallel will wrap model
recursively, it may cause some problem if one just use
``BaseModel.val_step`` to implement ``val_step`` here. To avoid that,
``val_step`` will call methods of :obj:`BaseModel` to pre-process
data first, and use ``FullyShardedDataParallel.forward`` to get result.
- ``test_step``: Called by ``runner.test_loop`` and get the inference
results. Its logic is equivalent to ``val_loop``.
Args:
module (nn.Module): module to be wrapped with FSDP.
process_group (ProcessGroup, optional): process group for sharding.
cpu_offload (bool, CPUOffload, optional):
CPU offloading config.
Different from FullyShardedDataParallel,Since it can be set by
users' pre-defined config in MMEngine,its type is expected to be
`None`, `bool` or `CPUOffload`.
Currently, only parameter and gradient CPU offload is supported.
It can be enabled via passing in
``cpu_offload=CPUOffload(offload_params=True)``. Note that this
currently implicitly enables gradient offloading to CPU in order
for params and grads to be on same device to work with optimizer.
This API is subject to change. Default is ``None`` in which case
there will be no offloading.
auto_wrap_policy (str or Callable, optional):
Specifying a policy to recursively wrap layers with FSDP.
Different from FullyShardedDataParallel, Since it can be set by
users' pre-defined config in MMEngine, its type is expected to be
`None`, `str` or `Callable`. If it's `str`, then
MMFullyShardedDataParallel will try to get specified method in
``FSDP_WRAP_POLICIES`` registry,and this method will be passed to
FullyShardedDataParallel to finally initialize model.
Note that this policy currently will only apply to child modules of
the passed in module. The remainder modules are always wrapped in
the returned FSDP root instance.
``default_auto_wrap_policy`` written in
``torch.distributed.fsdp.wrap`` is an example of
``auto_wrap_policy`` callable, this policy wraps layers with
parameter sizes larger than 100M. Users can supply the customized
``auto_wrap_policy`` callable that should accept following
arguments: ``module: nn.Module``, ``recurse: bool``,
``unwrapped_params: int``, extra customized arguments could be
added to the customized ``auto_wrap_policy`` callable as well.
Example::
>>> def custom_auto_wrap_policy(
>>> module: nn.Module,
>>> recurse: bool,
>>> unwrapped_params: int,
>>> # These are customizable for this policy function.
>>> min_num_params: int = int(1e8),
>>> ) -> bool:
>>> return unwrapped_params >= min_num_params
backward_prefetch (str or BackwardPrefetch, optional):
Different from FullyShardedDataParallel, this argument could be a
string or a BackwardPrefetch instance. If it's a string, then
it should be ``BACKWARD_PRE`` or ``BACKWARD_POST``
mixed_precision (dict or MixedPrecision, optional):
This configures native mixed precision for FSDP. If this is set to
``None``. Different from the native FSDP, this argument can a dict
like this:
Examples:
>>> mixed_precision=dict(param_dtype='float16',
>>> buffer_dtype='float32',
>>> reduce_dtype='float32')
Defaults to None.
use_orig_params (bool): Different from native
``FullyShardedDataParallel``, it defaults to True.
**kwargs: Keyword arguments passed to
:class:`FullyShardedDataParallel`.
"""
def __init__(
self,
module: nn.Module,
process_group: Union[dict, ProcessGroup, None] = None,
sharding_strategy: Union[str, ShardingStrategy] = None,
cpu_offload: Union[bool, CPUOffload, None] = None,
auto_wrap_policy: Union[str, Callable, None] = None,
backward_prefetch: Union[str, BackwardPrefetch, None] = None,
mixed_precision: Union[dict, MixedPrecision, None] = None,
param_init_fn: Union[str, Callable[
[nn.Module], None]] = None, # type: ignore # noqa: E501
use_orig_params: bool = True,
**kwargs,
):
if isinstance(sharding_strategy, str):
sharding_strategy = ShardingStrategy[sharding_strategy]
if not (isinstance(sharding_strategy, ShardingStrategy)
or sharding_strategy is None):
raise TypeError(
'sharding_strategy must be str or enum of `ShardingStrategy` '
f', but got {sharding_strategy}')
if isinstance(cpu_offload, bool):
cpu_offload = CPUOffload(offload_params=cpu_offload)
if not (isinstance(cpu_offload, CPUOffload) or cpu_offload is None):
raise TypeError(
'`cpu_offload` should be `None`, `bool`'
f'or `CPUOffload`, but has type {type(cpu_offload)}')
with FUNCTIONS.switch_scope_and_registry(None):
if isinstance(auto_wrap_policy, str):
auto_wrap_policy = FUNCTIONS.get( # type: ignore
auto_wrap_policy)
if auto_wrap_policy is None:
raise ValueError('`auto_wrap_policy` is not registered!')
elif isinstance(auto_wrap_policy, dict):
policy = auto_wrap_policy.pop('type')
if isinstance(policy, str):
policy = FUNCTIONS.get(policy) # type: ignore
if policy is None:
raise ValueError('`auto_wrap_policy` is not registered!')
auto_wrap_policy = partial(policy, **auto_wrap_policy)
if not (auto_wrap_policy is None
or callable(auto_wrap_policy)): # type: ignore
raise TypeError('`auto_wrap_policy` should be a str, a '
'callable, a dict or None, but has type '
f'{type(auto_wrap_policy)}')
if isinstance(backward_prefetch, str):
backward_prefetch = BackwardPrefetch[backward_prefetch]
if not (isinstance(backward_prefetch, BackwardPrefetch)
or backward_prefetch is None):
raise TypeError(
'`backward_prefetch` should be `None`, string of '
'"BACKWARD_PRE" and "BACKWARD_POST", or '
f'`BackwardPrefetch`, but has type {type(backward_prefetch)}' # noqa: E501
)
if isinstance(param_init_fn, str):
param_init_fn = FUNCTIONS.get( # type: ignore
param_init_fn)
if param_init_fn is None:
raise ValueError('`param_init_fn` is not registered!')
elif isinstance(param_init_fn, dict):
init_fn = param_init_fn.pop('type')
if isinstance(param_init_fn, str):
init_fn = FUNCTIONS.get(init_fn) # type: ignore
if init_fn is None:
raise ValueError('`param_init_fn` is not registered!')
param_init_fn = partial(init_fn, **param_init_fn)
if not (callable(param_init_fn) or param_init_fn is None):
raise TypeError('`param_init_fn` should be a str, a '
'callable, a dict or None, but has type '
f'{type(param_init_fn)}')
def parse_dtype(dtype):
if dtype is None:
return None
elif isinstance(dtype, str):
return getattr(torch, dtype)
elif isinstance(dtype, torch.dtype):
return dtype
else:
raise TypeError(
'`dtype` should be `None`, `str` or `torch.dtype`, '
f'but has type {type(dtype)}')
if isinstance(mixed_precision, dict):
mixed_precision['param_dtype'] = parse_dtype(
mixed_precision.get('param_dtype', None))
mixed_precision['reduce_dtype'] = parse_dtype(
mixed_precision.get('reduce_dtype', None))
mixed_precision['buffer_dtype'] = parse_dtype(
mixed_precision.get('buffer_dtype', None))
mixed_precision = MixedPrecision(**mixed_precision)
elif isinstance(mixed_precision, MixedPrecision):
mixed_precision = mixed_precision
elif mixed_precision is not None:
raise TypeError(
'`mixed_precision` should be `None`, `dict` or '
f'`MixedPrecision`, but has type {type(mixed_precision)}')
# ignored_parameters and ignored_modules will be deprecated by PyTorch.
# Therefore we hide them in **kwargs.
# TODO: Update when PyTorch 2.1.0 released
if 'ignored_parameters' in kwargs:
kwargs['ignored_parameters'] = self._get_ignored_params(
module, kwargs['ignored_parameters'])
if 'ignored_modules' in kwargs:
kwargs['ignored_modules'] = self._get_ignored_modules(
module, kwargs['ignored_modules'])
super().__init__(
module=module,
process_group=process_group,
sharding_strategy=sharding_strategy,
auto_wrap_policy=auto_wrap_policy,
cpu_offload=cpu_offload,
backward_prefetch=backward_prefetch,
mixed_precision=mixed_precision,
param_init_fn=param_init_fn,
use_orig_params=use_orig_params,
**kwargs)
[文档] def train_step(self, data: dict,
optim_wrapper: OptimWrapper) -> Dict[str, torch.Tensor]:
"""Interface for model forward, backward and parameters updating during
training process.
:meth:`train_step` will perform the following steps in order:
- If :attr:`module` defines the preprocess method,
call ``module.preprocess`` to pre-processing data.
- Call ``module.forward(**data)`` and get losses.
- Parse losses.
- Call ``optim_wrapper.optimizer_step`` to update parameters.
- Return log messages of losses.
Args:
data (dict): Data sampled by dataloader.
optim_wrapper (OptimWrapper): A wrapper of optimizer to
update parameters.
Returns:
Dict[str, torch.Tensor]: A ``dict`` of tensor for logging.
"""
# enable automatic mixed precision training context.
with optim_wrapper.optim_context(self):
data = self.module.data_preprocessor(data, training=True)
if isinstance(data, dict):
losses = self(**data, mode='loss')
elif isinstance(data, (list, tuple)):
losses = self(*data, mode='loss')
else:
raise TypeError('Output of `data_preprocessor` should be '
f'list tuple or dict, but got {type(data)}')
parsed_loss, log_vars = self.module.parse_losses(losses)
optim_wrapper.update_params(parsed_loss)
return log_vars
[文档] def val_step(self, data: dict) -> List[BaseDataElement]:
"""Gets the prediction of module during validation process.
Args:
data (dict): Data sampled by dataloader.
Returns:
List[BaseDataElement] or dict: The predictions of given data.
"""
data = self.module.data_preprocessor(data, False)
return self._run_forward(data, mode='predict') # type: ignore
[文档] def test_step(self, data: dict) -> List[BaseDataElement]:
"""Gets the predictions of module during testing process.
Args:
data (dict): Data sampled by dataloader.
Returns:
List[BaseDataElement]: The predictions of given data.
"""
data = self.module.data_preprocessor(data, False)
return self._run_forward(data, mode='predict') # type: ignore
def _run_forward(self, data: Union[dict, tuple, list],
mode: str) -> Union[Dict[str, torch.Tensor], list]:
"""Unpacks data for :meth:`forward`
Args:
data (dict or tuple or list): Data sampled from dataset.
mode (str): Mode of forward.
Returns:
dict or list: Results of training or testing mode.
"""
if isinstance(data, dict):
results = self(**data, mode=mode)
elif isinstance(data, (list, tuple)):
results = self(*data, mode=mode)
else:
raise TypeError('Output of `data_preprocessor` should be '
f'list, tuple or dict, but got {type(data)}')
return results
def _get_ignored_params(self, module: nn.Module,
ignored_parameters: Union[Iterable[str],
Iterable[nn.Module]]):
"""Get params from string."""
params_dict = dict(module.named_parameters())
if is_seq_of(ignored_parameters, str):
ignored_parameters = [
params_dict[name] for name in ignored_parameters
]
if not is_seq_of(ignored_parameters,
nn.Parameter) and ignored_parameters is not None:
raise TypeError(
'`ignored_modules` should be `None`, `Iterable[str]` or '
'`Iterable[nn.Parameters]`, but has type '
f'{type(ignored_parameters)}')
return ignored_parameters
def _get_ignored_modules(self, module: nn.Module,
ignored_modules: Union[Iterable[str],
Iterable[nn.Module]]):
"""Get modules from string."""
modules_dict = dict(module.named_modules())
if is_seq_of(ignored_modules, str):
ignored_modules = [modules_dict[name] for name in ignored_modules]
if not is_seq_of(ignored_modules,
nn.Module) and ignored_modules is not None:
raise TypeError(
'`ignored_modules` should be `None`, `Iterable[str]` or '
'`Iterable[nn.Module]`, but has type '
f'{type(ignored_modules)}')
return ignored_modules
if digit_version(torch.__version__) < digit_version('2.0.1'):
@staticmethod
def optim_state_dict(
model: torch.nn.Module,
optim: torch.optim.Optimizer,
group: Optional[dist.ProcessGroup] = None,
) -> Dict[str, Any]:
"""Copied from pytorch 2.0.1 which has fixed some bugs."""
state_dict_settings = FullyShardedDataParallel.get_state_dict_type(
model)
return FullyShardedDataParallel._optim_state_dict_impl(
model=model,
optim=optim,
optim_state_dict=optim.state_dict(),
optim_input=None,
rank0_only=getattr(state_dict_settings.optim_state_dict_config,
'rank0_only', False),
full_state_dict=state_dict_settings.state_dict_type ==
StateDictType.FULL_STATE_DICT,
group=group,
)
@staticmethod
def set_state_dict_type(
module: nn.Module,
state_dict_type: StateDictType,
state_dict_config: Optional[StateDictConfig] = None,
optim_state_dict_config: Optional[OptimStateDictConfig] = None,
) -> StateDictSettings:
"""Copied from pytorch 2.0.1 which has fixed some bugs."""
import torch.distributed.fsdp._traversal_utils as traversal_utils
_state_dict_type_to_config = {
StateDictType.FULL_STATE_DICT: FullStateDictConfig,
StateDictType.LOCAL_STATE_DICT: LocalStateDictConfig,
StateDictType.SHARDED_STATE_DICT: ShardedStateDictConfig,
}
_optim_state_dict_type_to_config = {
StateDictType.FULL_STATE_DICT: FullOptimStateDictConfig,
StateDictType.LOCAL_STATE_DICT: LocalOptimStateDictConfig,
StateDictType.SHARDED_STATE_DICT: ShardedOptimStateDictConfig,
}
# Use the default config if a state_dict config is not set.
state_dict_config_type = _state_dict_type_to_config[
state_dict_type]
optim_state_dict_config_type = _optim_state_dict_type_to_config[
state_dict_type]
if state_dict_config is None:
state_dict_config = state_dict_config_type()
if optim_state_dict_config is None:
optim_state_dict_config = optim_state_dict_config_type()
if state_dict_config_type != type(state_dict_config):
raise RuntimeError('Expected state_dict_config of type '
f'{state_dict_config_type} '
f'but got {type(state_dict_config)}')
if optim_state_dict_config_type != type(optim_state_dict_config):
raise RuntimeError('Expected optim_state_dict_config of type '
f'{optim_state_dict_config_type} '
f'but got {type(optim_state_dict_config)}')
# Set the state_dict type and configurations.
prev_state_dict_type = None
prev_state_dict_config = None
prev_optim_state_dict_config = None
for submodule in traversal_utils._get_fsdp_states(module):
if prev_state_dict_type is None:
prev_state_dict_type = submodule._state_dict_type
else:
assert (
prev_state_dict_type == submodule._state_dict_type
), 'All FSDP modules should have the same state_dict_type.'
if prev_state_dict_config is None:
prev_state_dict_config = submodule._state_dict_config
else:
assert isinstance(
submodule._state_dict_config,
type(prev_state_dict_config)), (
'All FSDP modules must have the same type of '
'state_dict_config.')
if prev_optim_state_dict_config is None:
prev_optim_state_dict_config = \
submodule._optim_state_dict_config
else:
assert isinstance(
submodule._optim_state_dict_config,
type(prev_optim_state_dict_config),
), ('All FSDP modules must have the same type of '
'optim_state_dict_config.')
submodule._state_dict_type = state_dict_type
submodule._state_dict_config = state_dict_config
submodule._optim_state_dict_config = optim_state_dict_config
return StateDictSettings(prev_state_dict_type,
prev_state_dict_config,
prev_optim_state_dict_config)