Shortcuts

mmengine.optim.scheduler.param_scheduler 源代码

# Copyright (c) OpenMMLab. All rights reserved.
# ------------------------------------------------------------------------
# Modified from https://github.com/pytorch/pytorch
# Copyright (c) Facebook, Inc. and its affiliates. All Rights Reserved
# ------------------------------------------------------------------------

import math
import warnings
import weakref
from collections import Counter
from functools import wraps
from typing import Callable, List, Optional, Sequence, Union

from torch.optim import Optimizer

from mmengine.logging import print_log
from mmengine.optim import BaseOptimWrapper
from mmengine.registry import PARAM_SCHEDULERS

INF = int(1e9)

OptimizerType = Union[BaseOptimWrapper, Optimizer]


[文档]class _ParamScheduler: """Base class for parameter schedulers. It should be inherited by all schedulers that schedule parameters in the optimizer's ``param_groups``. All subclasses should overwrite the ``_get_value()`` according to their own schedule strategy. The implementation is motivated by https://github.com/pytorch/pytorch/blob/master/torch/optim/lr_scheduler.py. Args: optimizer (BaseOptimWrapper or Optimizer): Wrapped optimizer. param_name (str): Name of the parameter to be adjusted, such as ``lr``, ``momentum``. begin (int): Step at which to start updating the parameters. Defaults to 0. end (int): Step at which to stop updating the parameters. Defaults to INF. last_step (int): The index of last step. Used for resuming without state dict. Default value ``-1`` means the ``step`` function is never be called before. Defaults to -1. by_epoch (bool): Whether the scheduled parameters are updated by epochs. Defaults to True. verbose (bool): Whether to print the value for each update. Defaults to False. """ # noqa: E501 def __init__(self, optimizer: OptimizerType, param_name: str, begin: int = 0, end: int = INF, last_step: int = -1, by_epoch: bool = True, verbose: bool = False): # Attach optimizer if not isinstance(optimizer, (Optimizer, BaseOptimWrapper)): raise TypeError('``optimizer`` should be an Optimizer,' 'but got {}'.format(type(optimizer).__name__)) self.optimizer = optimizer self.param_name = param_name if end <= begin: raise ValueError('end should be larger than begin, but got' ' begin={}, end={}'.format(begin, end)) self.begin = begin self.end = end self.by_epoch = by_epoch assert isinstance(last_step, int) and last_step >= -1 # Initialize valid step count and base values if last_step == -1: for group in optimizer.param_groups: # If the param is never be scheduled, record the current value # as the initial value. group.setdefault(f'initial_{param_name}', group[param_name]) else: for i, group in enumerate(optimizer.param_groups): if f'initial_{param_name}' not in group: raise KeyError( f"param 'initial_{param_name}' is not specified " 'in param_groups[{}] when resuming an optimizer'. format(i)) self.base_values = [ group[f'initial_{param_name}'] for group in optimizer.param_groups ] self.last_step = last_step # Following https://github.com/pytorch/pytorch/issues/20124 # We would like to ensure that `scheduler.step()` is called after # `optimizer.step()` def with_counter(method: Callable): if getattr(method, '_with_counter', False): # `optimizer.step()` has already been replaced, return. return method # Keep a weak reference to the optimizer instance to prevent # cyclic references. instance_ref = weakref.ref(method.__self__) # type: ignore # Get the unbound method for the same purpose. func = method.__func__ # type: ignore cls = instance_ref().__class__ # type: ignore del method @wraps(func) def wrapper(*args, **kwargs): instance = instance_ref() instance._global_step += 1 wrapped = func.__get__(instance, cls) return wrapped(*args, **kwargs) # Note that the returned function here is no longer a bound method, # so attributes like `__func__` and `__self__` no longer exist. wrapper._with_counter = True # type: ignore return wrapper # add counter to optimizer self.optimizer.step = with_counter(self.optimizer.step) # type: ignore self.optimizer._global_step = -1 # type: ignore self._global_step = -1 self.verbose = verbose self.step()
[文档] def state_dict(self) -> dict: """Returns the state of the scheduler as a :class:`dict`. It contains an entry for every variable in self.__dict__ which is not the optimizer. Returns: dict: scheduler state. """ return { key: value for key, value in self.__dict__.items() if key != 'optimizer' }
[文档] def load_state_dict(self, state_dict: dict): """Loads the schedulers state. Args: state_dict (dict): scheduler state. Should be an object returned from a call to :meth:`state_dict`. """ self.__dict__.update(state_dict)
[文档] def get_last_value(self): """Return the last computed value by current scheduler. Returns: list: A list of the last computed value of the optimizer's ``param_group``. """ return self._last_value
def _get_value(self): """Compute value using chainable form of the scheduler.""" raise NotImplementedError
[文档] def print_value(self, is_verbose: bool, group: int, value: float): """Display the current parameter value. Args: is_verbose (bool): Whether to print the value. group (int): The index of the current ``param_group``. value (float): The parameter value. """ if is_verbose: print_log( f'Adjusting parameter value of group {group} to {value:.4e}.', logger='current')
[文档] def step(self): """Adjusts the parameter value of each parameter group based on the specified schedule.""" # Raise a warning if old pattern is detected # https://github.com/pytorch/pytorch/issues/20124 if self._global_step == 0: if not hasattr(self.optimizer.step, '_with_counter'): warnings.warn( 'Seems like `optimizer.step()` has been overridden after ' 'parameter value scheduler initialization. Please, make ' 'sure to call `optimizer.step()` before ' '`scheduler.step()`. See more details at ' 'https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate', # noqa: E501 UserWarning) # Just check if there were two first scheduler.step() calls # before optimizer.step() elif self.optimizer._global_step < 0: warnings.warn( 'Detected call of `scheduler.step()` before ' '`optimizer.step()`. In PyTorch 1.1.0 and later, you ' 'should call them in the opposite order: ' '`optimizer.step()` before `scheduler.step()`. ' 'Failure to do this will result in PyTorch skipping ' 'the first value of the parameter value schedule. ' 'See more details at https://pytorch.org/docs/stable/optim.html#how-to-adjust-learning-rate', # noqa: E501 UserWarning) self._global_step += 1 # Compute parameter value per param group in the effective range if self.begin <= self._global_step < self.end: self.last_step += 1 values = self._get_value() for i, data in enumerate(zip(self.optimizer.param_groups, values)): param_group, value = data param_group[self.param_name] = value self.print_value(self.verbose, i, value) self._last_value = [ group[self.param_name] for group in self.optimizer.param_groups ]
[文档]@PARAM_SCHEDULERS.register_module() class StepParamScheduler(_ParamScheduler): """Decays the parameter value of each parameter group by gamma every step_size epochs. Notice that such decay can happen simultaneously with other changes to the parameter value from outside this scheduler. Args: optimizer (BaseOptimWrapper or Optimizer): Wrapped optimizer. param_name (str): Name of the parameter to be adjusted, such as ``lr``, ``momentum``. step_size (int): Period of parameter value decay. gamma (float): Multiplicative factor of parameter value decay. Defaults to 0.1. begin (int): Step at which to start updating the parameters. Defaults to 0. end (int): Step at which to stop updating the parameters. Defaults to INF. last_step (int): The index of last step. Used for resume without state dict. Defaults to -1. by_epoch (bool): Whether the scheduled parameters are updated by epochs. Defaults to True. verbose (bool): Whether to print the value for each update. Defaults to False. """ def __init__(self, optimizer: OptimizerType, param_name: str, step_size: int, gamma: float = 0.1, begin: int = 0, end: int = INF, last_step: int = -1, by_epoch: bool = True, verbose: bool = False): self.step_size = step_size self.gamma = gamma super().__init__( optimizer=optimizer, param_name=param_name, begin=begin, end=end, last_step=last_step, by_epoch=by_epoch, verbose=verbose)
[文档] @classmethod def build_iter_from_epoch(cls, *args, step_size, begin=0, end=INF, by_epoch=True, epoch_length=None, **kwargs): """Build an iter-based instance of this scheduler from an epoch-based config.""" assert by_epoch, 'Only epoch-based kwargs whose `by_epoch=True` can ' \ 'be converted to iter-based.' assert epoch_length is not None and epoch_length > 0, \ f'`epoch_length` must be a positive integer, ' \ f'but got {epoch_length}.' by_epoch = False step_size = step_size * epoch_length begin = int(begin * epoch_length) if end != INF: end = int(end * epoch_length) return cls( *args, step_size=step_size, begin=begin, end=end, by_epoch=by_epoch, **kwargs)
def _get_value(self): """Compute value using chainable form of the scheduler.""" if (self.last_step == 0) or (self.last_step % self.step_size != 0): return [ group[self.param_name] for group in self.optimizer.param_groups ] return [ group[self.param_name] * self.gamma for group in self.optimizer.param_groups ]
[文档]@PARAM_SCHEDULERS.register_module() class MultiStepParamScheduler(_ParamScheduler): """Decays the specified parameter in each parameter group by gamma once the number of epoch reaches one of the milestones. Notice that such decay can happen simultaneously with other changes to the parameter from outside this scheduler. Args: optimizer (BaseOptimWrapper or Optimizer): Wrapped optimizer. param_name (str): Name of the parameter to be adjusted, such as ``lr``, ``momentum``. milestones (list): List of epoch indices. Must be increasing. gamma (float): Multiplicative factor of parameter value decay. Defaults to 0.1. begin (int): Step at which to start updating the parameters. Defaults to 0. end (int): Step at which to stop updating the parameters. Defaults to INF. last_step (int): The index of last step. Used for resume without state dict. Defaults to -1. by_epoch (bool): Whether the scheduled parameters are updated by epochs. Defaults to True. verbose (bool): Whether to print the value for each update. Defaults to False. """ def __init__(self, optimizer: OptimizerType, param_name: str, milestones: List[int], gamma: float = 0.1, last_step: int = -1, begin: int = 0, end: int = INF, by_epoch: bool = True, verbose: bool = False): self.milestones = Counter(milestones) self.gamma = gamma super().__init__( optimizer, param_name=param_name, begin=begin, end=end, last_step=last_step, by_epoch=by_epoch, verbose=verbose)
[文档] @classmethod def build_iter_from_epoch(cls, *args, milestones, begin=0, end=INF, by_epoch=True, epoch_length=None, **kwargs): """Build an iter-based instance of this scheduler from an epoch-based config.""" assert by_epoch, 'Only epoch-based kwargs whose `by_epoch=True` can ' \ 'be converted to iter-based.' assert epoch_length is not None and epoch_length > 0, \ f'`epoch_length` must be a positive integer, ' \ f'but got {epoch_length}.' by_epoch = False milestones = [i * epoch_length for i in milestones] begin = int(begin * epoch_length) if end != INF: end = int(end * epoch_length) return cls( *args, milestones=milestones, begin=begin, end=end, by_epoch=by_epoch, **kwargs)
def _get_value(self): """Compute value using chainable form of the scheduler.""" if self.last_step not in self.milestones: return [ group[self.param_name] for group in self.optimizer.param_groups ] return [ group[self.param_name] * self.gamma**self.milestones[self.last_step] for group in self.optimizer.param_groups ]
[文档]@PARAM_SCHEDULERS.register_module() class ConstantParamScheduler(_ParamScheduler): """Decays the parameter value of each parameter group by a small constant factor until the number of epoch reaches a pre-defined milestone: ``end``. Notice that such decay can happen simultaneously with other changes to the parameter value from outside this scheduler. Args: optimizer (Optimizer or BaseOptimWrapper): optimizer or Wrapped optimizer. param_name (str): Name of the parameter to be adjusted, such as ``lr``, ``momentum``. factor (float): The number we multiply parameter value until the milestone. Defaults to 1./3. begin (int): Step at which to start updating the parameters. Defaults to 0. end (int): Step at which to stop updating the parameters. Defaults to INF. last_step (int): The index of last step. Used for resume without state dict. Defaults to -1. by_epoch (bool): Whether the scheduled parameters are updated by epochs. Defaults to True. verbose (bool): Whether to print the value for each update. Defaults to False. """ def __init__(self, optimizer: OptimizerType, param_name: str, factor: float = 1.0 / 3, begin: int = 0, end: int = INF, last_step: int = -1, by_epoch: bool = True, verbose: bool = False): if factor > 1.0 or factor < 0: raise ValueError( 'Constant multiplicative factor should between 0 and 1.') self.factor = factor self.total_iters = end - begin - 1 super().__init__( optimizer, param_name=param_name, begin=begin, end=end, last_step=last_step, by_epoch=by_epoch, verbose=verbose)
[文档] @classmethod def build_iter_from_epoch(cls, *args, begin=0, end=INF, by_epoch=True, epoch_length=None, **kwargs): """Build an iter-based instance of this scheduler from an epoch-based config.""" assert by_epoch, 'Only epoch-based kwargs whose `by_epoch=True` can ' \ 'be converted to iter-based.' assert epoch_length is not None and epoch_length > 0, \ f'`epoch_length` must be a positive integer, ' \ f'but got {epoch_length}.' by_epoch = False begin = int(begin * epoch_length) if end != INF: end = int(end * epoch_length) return cls(*args, begin=begin, end=end, by_epoch=by_epoch, **kwargs)
def _get_value(self): """Compute value using chainable form of the scheduler.""" if self.last_step == 0: return [ group[self.param_name] * self.factor for group in self.optimizer.param_groups ] if (self.last_step > self.total_iters or (self.last_step != self.total_iters)): return [ group[self.param_name] for group in self.optimizer.param_groups ] if self.last_step == self.total_iters: return [ group[self.param_name] * (1.0 / self.factor) for group in self.optimizer.param_groups ]
[文档]@PARAM_SCHEDULERS.register_module() class ExponentialParamScheduler(_ParamScheduler): """Decays the parameter value of each parameter group by gamma every epoch. Args: optimizer (Optimizer or BaseOptimWrapper): optimizer or Wrapped optimizer. param_name (str): Name of the parameter to be adjusted, such as ``lr``, ``momentum``. gamma (float): Multiplicative factor of parameter value decay. begin (int): Step at which to start updating the parameters. Defaults to 0. end (int): Step at which to stop updating the parameters. Defaults to INF. last_step (int): The index of last step. Used for resume without state dict. Defaults to -1. by_epoch (bool): Whether the scheduled parameters are updated by epochs. Defaults to True. verbose (bool): Whether to print the value for each update. Defaults to False. """ def __init__(self, optimizer: OptimizerType, param_name: str, gamma: float, begin: int = 0, end: int = INF, last_step: int = -1, by_epoch: bool = True, verbose: bool = False): self.gamma = gamma super().__init__( optimizer, param_name=param_name, begin=begin, end=end, last_step=last_step, by_epoch=by_epoch, verbose=verbose)
[文档] @classmethod def build_iter_from_epoch(cls, *args, begin=0, end=INF, by_epoch=True, epoch_length=None, **kwargs): """Build an iter-based instance of this scheduler from an epoch-based config.""" assert by_epoch, 'Only epoch-based kwargs whose `by_epoch=True` can ' \ 'be converted to iter-based.' assert epoch_length is not None and epoch_length > 0, \ f'`epoch_length` must be a positive integer, ' \ f'but got {epoch_length}.' by_epoch = False begin = int(begin * epoch_length) if end != INF: end = int(end * epoch_length) return cls(*args, begin=begin, end=end, by_epoch=by_epoch, **kwargs)
def _get_value(self): """Compute value using chainable form of the scheduler.""" if self.last_step == 0: return [ group[self.param_name] for group in self.optimizer.param_groups ] return [ group[self.param_name] * self.gamma for group in self.optimizer.param_groups ]
[文档]@PARAM_SCHEDULERS.register_module() class CosineAnnealingParamScheduler(_ParamScheduler): r"""Set the parameter value of each parameter group using a cosine annealing schedule, where :math:`\eta_{max}` is set to the initial value and :math:`T_{cur}` is the number of epochs since the last restart in SGDR: .. math:: \begin{aligned} \eta_t & = \eta_{min} + \frac{1}{2}(\eta_{max} - \eta_{min})\left(1 + \cos\left(\frac{T_{cur}}{T_{max}}\pi\right)\right), & T_{cur} \neq (2k+1)T_{max}; \\ \eta_{t+1} & = \eta_{t} + \frac{1}{2}(\eta_{max} - \eta_{min}) \left(1 - \cos\left(\frac{1}{T_{max}}\pi\right)\right), & T_{cur} = (2k+1)T_{max}. \end{aligned} Notice that because the schedule is defined recursively, the parameter value can be simultaneously modified outside this scheduler by other operators. If the parameter value is set solely by this scheduler, the parameter value at each step becomes: .. math:: \eta_t = \eta_{min} + \frac{1}{2}(\eta_{max} - \eta_{min})\left(1 + \cos\left(\frac{T_{cur}}{T_{max}}\pi\right)\right) It has been proposed in `SGDR: Stochastic Gradient Descent with Warm Restarts`_. Note that this only implements the cosine annealing part of SGDR, and not the restarts. Args: optimizer (Optimizer or BaseOptimWrapper): optimizer or Wrapped optimizer. param_name (str): Name of the parameter to be adjusted, such as ``lr``, ``momentum``. T_max (int, optional): Maximum number of iterations. If not specified, use ``end - begin``. Defaults to None. eta_min (float, optional): Minimum parameter value. Defaults to None. begin (int): Step at which to start updating the parameters. Defaults to 0. end (int): Step at which to stop updating the parameters. Defaults to INF. last_step (int): The index of last step. Used for resume without state dict. Defaults to -1. by_epoch (bool): Whether the scheduled parameters are updated by epochs. Defaults to True. verbose (bool): Whether to print the value for each update. Defaults to False. eta_min_ratio (float, optional): The ratio of the minimum parameter value to the base parameter value. Either `eta_min` or `eta_min_ratio` should be specified. Defaults to None. New in version 0.3.2. .. _SGDR\: Stochastic Gradient Descent with Warm Restarts: https://arxiv.org/abs/1608.03983 """ # noqa: E501 def __init__(self, optimizer: Union[Optimizer, BaseOptimWrapper], param_name: str, T_max: Optional[int] = None, eta_min: Optional[float] = None, begin: int = 0, end: int = INF, last_step: int = -1, by_epoch: bool = True, verbose: bool = False, eta_min_ratio: Optional[float] = None): # To preserve backwards compatibility if eta_min is None and eta_min_ratio is None: eta_min = 0. assert (eta_min is None) ^ (eta_min_ratio is None), \ 'Either `eta_min` or `eta_min_ratio should be specified' self.T_max = T_max or (end - begin) self.eta_min = eta_min self.eta_min_ratio = eta_min_ratio super().__init__( optimizer, param_name=param_name, begin=begin, end=end, last_step=last_step, by_epoch=by_epoch, verbose=verbose)
[文档] @classmethod def build_iter_from_epoch(cls, *args, T_max=None, begin=0, end=INF, by_epoch=True, epoch_length=None, **kwargs): """Build an iter-based instance of this scheduler from an epoch-based config.""" assert by_epoch, 'Only epoch-based kwargs whose `by_epoch=True` can ' \ 'be converted to iter-based.' assert epoch_length is not None and epoch_length > 0, \ f'`epoch_length` must be a positive integer, ' \ f'but got {epoch_length}.' by_epoch = False if T_max is not None: T_max = T_max * epoch_length begin = int(begin * epoch_length) if end != INF: end = int(end * epoch_length) return cls( *args, T_max=T_max, begin=begin, end=end, by_epoch=by_epoch, **kwargs)
def _get_value(self) -> list: """Compute value using chainable form of the scheduler.""" def _get_eta_min(base_value): if self.eta_min_ratio is None: return self.eta_min return base_value * self.eta_min_ratio if self.last_step == 0: return [ group[self.param_name] for group in self.optimizer.param_groups ] elif (self.last_step - 1 - self.T_max) % (2 * self.T_max) == 0: return [ group[self.param_name] + (base_value - _get_eta_min(base_value)) * (1 - math.cos(math.pi / self.T_max)) / 2 for base_value, group in zip(self.base_values, self.optimizer.param_groups) ] return [(1 + math.cos(math.pi * self.last_step / self.T_max)) / (1 + math.cos(math.pi * (self.last_step - 1) / self.T_max)) * (group[self.param_name] - _get_eta_min(base_value)) + _get_eta_min(base_value) for base_value, group in zip( self.base_values, self.optimizer.param_groups)]
[文档]@PARAM_SCHEDULERS.register_module() class LinearParamScheduler(_ParamScheduler): """Decays the parameter value of each parameter group by linearly changing small multiplicative factor until the number of epoch reaches a pre-defined milestone: ``end``. Notice that such decay can happen simultaneously with other changes to the parameter value from outside this scheduler. Args: optimizer (Optimizer or BaseOptimWrapper): optimizer or Wrapped optimizer. param_name (str): Name of the parameter to be adjusted, such as ``lr``, ``momentum``. start_factor (float): The number we multiply parameter value in the first epoch. The multiplication factor changes towards end_factor in the following epochs. Defaults to 1./3. end_factor (float): The number we multiply parameter value at the end of linear changing process. Defaults to 1.0. begin (int): Step at which to start updating the parameters. Defaults to 0. end (int): Step at which to stop updating the parameters. Defaults to INF. last_step (int): The index of last step. Used for resume without state dict. Defaults to -1. by_epoch (bool): Whether the scheduled parameters are updated by epochs. Defaults to True. verbose (bool): Whether to print the value for each update. Defaults to False. """ def __init__(self, optimizer: Union[Optimizer, BaseOptimWrapper], param_name: str, start_factor: float = 1.0 / 3, end_factor: float = 1.0, begin: int = 0, end: int = INF, last_step: int = -1, by_epoch: bool = True, verbose: bool = False): if start_factor > 1.0 or start_factor < 0: raise ValueError( 'Starting multiplicative factor should between 0 and 1.') if end_factor > 1.0 or end_factor < 0: raise ValueError( 'Ending multiplicative factor should between 0 and 1.') self.start_factor = start_factor self.end_factor = end_factor self.total_iters = end - begin - 1 super().__init__( optimizer, param_name=param_name, begin=begin, end=end, last_step=last_step, by_epoch=by_epoch, verbose=verbose)
[文档] @classmethod def build_iter_from_epoch(cls, *args, begin=0, end=INF, by_epoch=True, epoch_length=None, **kwargs): """Build an iter-based instance of this scheduler from an epoch-based config.""" assert by_epoch, 'Only epoch-based kwargs whose `by_epoch=True` can ' \ 'be converted to iter-based.' assert epoch_length is not None and epoch_length > 0, \ f'`epoch_length` must be a positive integer, ' \ f'but got {epoch_length}.' by_epoch = False begin = int(begin * epoch_length) if end != INF: end = int(end * epoch_length) return cls(*args, begin=begin, end=end, by_epoch=by_epoch, **kwargs)
def _get_value(self): """Compute value using chainable form of the scheduler.""" if self.last_step == 0: return [ group[self.param_name] * self.start_factor for group in self.optimizer.param_groups ] return [ group[self.param_name] * (1. + (self.end_factor - self.start_factor) / (self.total_iters * self.start_factor + (self.last_step - 1) * (self.end_factor - self.start_factor))) for group in self.optimizer.param_groups ]
[文档]@PARAM_SCHEDULERS.register_module() class PolyParamScheduler(_ParamScheduler): """Decays the parameter value of each parameter group in a polynomial decay scheme. Notice that such decay can happen simultaneously with other changes to the parameter value from outside this scheduler. Args: optimizer (Optimizer or BaseOptimWrapper): optimizer or Wrapped optimizer. param_name (str): Name of the parameter to be adjusted, such as ``lr``, ``momentum``. eta_min (float): Minimum parameter value at the end of scheduling. Defaults to 0. power (float): The power of the polynomial. Defaults to 1.0. begin (int): Step at which to start updating the parameters. Defaults to 0. end (int): Step at which to stop updating the parameters. Defaults to INF. last_step (int): The index of last step. Used for resume without state dict. Defaults to -1. by_epoch (bool): Whether the scheduled parameters are updated by epochs. Defaults to True. verbose (bool): Whether to print the value for each update. Defaults to False. """ def __init__(self, optimizer: Union[Optimizer, BaseOptimWrapper], param_name: str, eta_min: float = 0, power: float = 1.0, begin: int = 0, end: int = INF, last_step: int = -1, by_epoch: bool = True, verbose: bool = False): self.eta_min = eta_min self.power = power self.total_iters = end - begin - 1 super().__init__( optimizer, param_name=param_name, begin=begin, end=end, last_step=last_step, by_epoch=by_epoch, verbose=verbose)
[文档] @classmethod def build_iter_from_epoch(cls, *args, begin=0, end=INF, by_epoch=True, epoch_length=None, **kwargs): """Build an iter-based instance of this scheduler from an epoch-based config.""" assert by_epoch, 'Only epoch-based kwargs whose `by_epoch=True` can ' \ 'be converted to iter-based.' assert epoch_length is not None and epoch_length > 0, \ f'`epoch_length` must be a positive integer, ' \ f'but got {epoch_length}.' by_epoch = False begin = int(begin * epoch_length) if end != INF: end = int(end * epoch_length) return cls(*args, begin=begin, end=end, by_epoch=by_epoch, **kwargs)
def _get_value(self): """Compute value using chainable form of the scheduler.""" if self.last_step == 0: return [ group[self.param_name] for group in self.optimizer.param_groups ] return [(group[self.param_name] - self.eta_min) * (1 - 1 / (self.total_iters - self.last_step + 1))**self.power + self.eta_min for group in self.optimizer.param_groups]
[文档]@PARAM_SCHEDULERS.register_module() class OneCycleParamScheduler(_ParamScheduler): r"""Sets the parameters of each parameter group according to the 1cycle learning rate policy. The 1cycle policy anneals the learning rate from an initial learning rate to some maximum learning rate and then from that maximum learning rate to some minimum learning rate much lower than the initial learning rate. This policy was initially described in the paper `Super-Convergence: Very Fast Training of Neural Networks Using Large Learning Rates`_. The 1cycle learning rate policy changes the learning rate after every batch. `step` should be called after a batch has been used for training. This scheduler is not chainable. Note also that the total number of steps in the cycle can be determined in one of two ways (listed in order of precedence): #. A value for total_steps is explicitly provided. #. If total_steps is not defined, begin and end of the ParamSchedul will works for it. In this case, the number of total steps is inferred by total_steps = end - begin The default behaviour of this scheduler follows the fastai implementation of 1cycle, which claims that "unpublished work has shown even better results by using only two phases". To mimic the behaviour of the original paper instead, set ``three_phase=True``. Args: optimizer (Optimizer): Wrapped optimizer. param_name (str): Name of the parameter to be adjusted, such as ``lr``, ``momentum``. eta_max (float or list): Upper parameter value boundaries in the cycle for each parameter group. total_steps (int): The total number of steps in the cycle. Note that if a value is not provided here, then it will be equal to ``end - begin``. Defaults to None pct_start (float): The percentage of the cycle (in number of steps) spent increasing the learning rate. Defaults to 0.3 anneal_strategy (str): {'cos', 'linear'} Specifies the annealing strategy: "cos" for cosine annealing, "linear" for linear annealing. Defaults to 'cos' div_factor (float): Determines the initial learning rate via initial_param = eta_max/div_factor Defaults to 25 final_div_factor (float): Determines the minimum learning rate via eta_min = initial_param/final_div_factor Defaults to 1e4 three_phase (bool): If ``True``, use a third phase of the schedule to annihilate the learning rate according to 'final_div_factor' instead of modifying the second phase (the first two phases will be symmetrical about the step indicated by 'pct_start'). last_step (int): The index of last step. Used for resume without state dict. Defaults to -1. by_epoch (bool): Whether the scheduled parameters are updated by epochs. Defaults to True. verbose (bool): Whether to print the value for each update. Defaults to False. .. _Super-Convergence\: Very Fast Training of Neural Networks Using Large Learning Rates: https://arxiv.org/abs/1708.07120 """ # noqa E501 def __init__(self, optimizer: Union[Optimizer, BaseOptimWrapper], param_name: str, eta_max: float = 0, total_steps: Optional[int] = None, pct_start: float = 0.3, anneal_strategy: str = 'cos', div_factor: float = 25., final_div_factor: float = 1e4, three_phase: bool = False, begin: int = 0, end: int = INF, last_step: int = -1, by_epoch: bool = True, verbose: bool = False): assert param_name == 'lr', ('OneCycle only works for learning rate ' 'updating, but got patam_name as ' f'{param_name}') self.eta_max = eta_max self.div_factor = div_factor self.final_div_factor = final_div_factor # Validate total_steps if total_steps is not None: if total_steps <= 0 or not isinstance(total_steps, int): raise ValueError('Expected positive integer total_steps, ' f'but got {total_steps}') self.total_steps = total_steps else: self.total_steps = end - begin # Validate pct_start if pct_start < 0 or pct_start > 1 or not isinstance(pct_start, float): raise ValueError('Expected float between 0 and 1 pct_start, ' f'but got {pct_start}') # Validate anneal_strategy if anneal_strategy not in ['cos', 'linear']: raise ValueError( 'anneal_strategy must by one of "cos" or "linear", ' f'instead got {anneal_strategy}') elif anneal_strategy == 'cos': self.anneal_func = self._annealing_cos elif anneal_strategy == 'linear': self.anneal_func = self._annealing_linear if three_phase: self._schedule_phases = [ { 'end_step': float(pct_start * self.total_steps) - 1, f'start_{param_name}': f'initial_{param_name}', f'end_{param_name}': f'max_{param_name}' }, { 'end_step': float(2 * pct_start * self.total_steps) - 2, f'start_{param_name}': f'max_{param_name}', f'end_{param_name}': f'initial_{param_name}' }, { 'end_step': self.total_steps - 1, f'start_{param_name}': f'initial_{param_name}', f'end_{param_name}': f'min_{param_name}' }, ] else: self._schedule_phases = [ { 'end_step': float(pct_start * self.total_steps) - 1, f'start_{param_name}': f'initial_{param_name}', f'end_{param_name}': f'max_{param_name}' }, { 'end_step': self.total_steps - 1, f'start_{param_name}': f'max_{param_name}', f'end_{param_name}': f'min_{param_name}' }, ] # Initialize parameters max_values = self._format_param(f'max_{param_name}', optimizer, eta_max) if last_step == -1: for idx, group in enumerate(optimizer.param_groups): group[f'initial_{param_name}'] = max_values[idx] / div_factor group[f'max_{param_name}'] = max_values[idx] group[f'min_{param_name}'] = \ group[f'initial_{param_name}'] / final_div_factor super().__init__( optimizer=optimizer, param_name=param_name, begin=begin, end=end, last_step=last_step, by_epoch=by_epoch, verbose=verbose) def _format_param(self, name, optimizer, param): """Return correctly formatted lr/momentum for each param group.""" if isinstance(param, (list, tuple)): if len(param) != len(optimizer.param_groups): raise ValueError( f'expected {len(optimizer.param_groups)} values ' f'for {name}, got {len(param)}') return param else: return [param] * len(optimizer.param_groups) @staticmethod def _annealing_cos(start, end, pct): """Cosine anneal from `start` to `end` as pct goes from 0.0 to 1.0.""" cos_out = math.cos(math.pi * pct) + 1 return end + (start - end) / 2.0 * cos_out @staticmethod def _annealing_linear(start, end, pct): """Linearly anneal from `start` to `end` as pct goes from 0.0 to 1.0.""" return (end - start) * pct + start
[文档] @classmethod def build_iter_from_epoch(cls, *args, begin=0, end=INF, total_steps=None, by_epoch=True, epoch_length=None, **kwargs): """Build an iter-based instance of this scheduler from an epoch-based config.""" assert by_epoch, 'Only epoch-based kwargs whose `by_epoch=True` can ' \ 'be converted to iter-based.' assert epoch_length is not None and epoch_length > 0, \ f'`epoch_length` must be a positive integer, ' \ f'but got {epoch_length}.' by_epoch = False begin = int(begin * epoch_length) if end != INF: end = int(end * epoch_length) if total_steps is not None: total_steps = total_steps * epoch_length return cls( *args, begin=begin, end=end, total_steps=total_steps, by_epoch=by_epoch, **kwargs)
def _get_value(self): """Compute value using chainable form of the scheduler.""" params = [] step_num = self.last_step if step_num > self.total_steps: raise ValueError( f'Tried to step {step_num + 1} times. ' f'The specified number of total steps is {self.total_steps}') for group in self.optimizer.param_groups: start_step = 0 for i, phase in enumerate(self._schedule_phases): end_step = phase['end_step'] if step_num <= end_step or i == len(self._schedule_phases) - 1: pct = (step_num - start_step) / (end_step - start_step) computed_param = self.anneal_func( group[phase['start_' + self.param_name]], group[phase['end_' + self.param_name]], pct) break start_step = phase['end_step'] params.append(computed_param) return params
@PARAM_SCHEDULERS.register_module() class CosineRestartParamScheduler(_ParamScheduler): """Sets the parameters of each parameter group according to the cosine annealing with restarts scheme. The cosine restart policy anneals the parameter from the initial value to `eta_min` with a cosine annealing schedule and then restarts another period from the maximum value multiplied with `restart_weight`. Args: optimizer (Optimizer or BaseOptimWrapper): optimizer or Wrapped optimizer. param_name (str): Name of the parameter to be adjusted, such as ``lr``, ``momentum``. periods (list[int]): Periods for each cosine anneling cycle. restart_weights (list[float]): Restart weights at each restart iteration. Defaults to [1]. eta_min (float, optional): Minimum parameter value at the end of scheduling. Defaults to None. eta_min_ratio (float, optional): The ratio of minimum parameter value to the base parameter value. Either `eta_min` or `eta_min_ratio` should be specified. Defaults to None. begin (int): Step at which to start updating the parameters. Defaults to 0. end (int): Step at which to stop updating the parameters. Defaults to INF. last_step (int): The index of last step. Used for resume without state dict. Defaults to -1. by_epoch (bool): Whether the scheduled parameters are updated by epochs. Defaults to True. verbose (bool): Whether to print the value for each update. Defaults to False. """ def __init__(self, optimizer: Union[Optimizer, BaseOptimWrapper], param_name: str, periods: List[int], restart_weights: Sequence[float] = (1, ), eta_min: Optional[float] = None, eta_min_ratio: Optional[float] = None, begin: int = 0, end: int = INF, last_step: int = -1, by_epoch: bool = True, verbose: bool = False): assert (eta_min is None) ^ (eta_min_ratio is None) self.periods = periods self.eta_min = eta_min self.eta_min_ratio = eta_min_ratio self.restart_weights = restart_weights assert (len(self.periods) == len(self.restart_weights) ), 'periods and restart_weights should have the same length.' self.cumulative_periods = [ sum(self.periods[0:i + 1]) for i in range(0, len(self.periods)) ] super().__init__( optimizer, param_name=param_name, begin=begin, end=end, last_step=last_step, by_epoch=by_epoch, verbose=verbose) @classmethod def build_iter_from_epoch(cls, *args, periods, begin=0, end=INF, by_epoch=True, epoch_length=None, **kwargs): """Build an iter-based instance of this scheduler from an epoch-based config.""" assert by_epoch, 'Only epoch-based kwargs whose `by_epoch=True` can ' \ 'be converted to iter-based.' assert epoch_length is not None and epoch_length > 0, \ f'`epoch_length` must be a positive integer, ' \ f'but got {epoch_length}.' periods = [p * epoch_length for p in periods] by_epoch = False begin = int(begin * epoch_length) if end != INF: end = int(end * epoch_length) return cls( *args, periods=periods, begin=begin, end=end, by_epoch=by_epoch, **kwargs) def _get_value(self): """Compute value using chainable form of the scheduler.""" idx = self.get_position_from_periods(self.last_step, self.cumulative_periods) # if current step is not in the periods, return origin parameters if idx is None: return [ group[self.param_name] for group in self.optimizer.param_groups ] current_weight = self.restart_weights[idx] nearest_restart = 0 if idx == 0 else self.cumulative_periods[idx - 1] current_periods = self.periods[idx] step = self.last_step - nearest_restart values = [] for base_value, group in zip(self.base_values, self.optimizer.param_groups): eta_max = base_value * current_weight if self.eta_min_ratio is None: eta_min = self.eta_min else: eta_min = base_value * self.eta_min_ratio if step == 0: values.append(eta_max) else: values.append( (1 + math.cos(math.pi * step / current_periods)) / (1 + math.cos(math.pi * (step - 1) / current_periods)) * (group[self.param_name] - eta_min) + eta_min) return values @staticmethod def get_position_from_periods( iteration: int, cumulative_periods: List[int]) -> Optional[int]: """Get the position from a period list. It will return the index of the right-closest number in the period list. For example, the cumulative_periods = [100, 200, 300, 400], if iteration == 50, return 0; if iteration == 210, return 2; if iteration == 300, return 3. Args: iteration (int): Current iteration. cumulative_periods (list[int]): Cumulative period list. Returns: Optional[int]: The position of the right-closest number in the period list. If not in the period, return None. """ for i, period in enumerate(cumulative_periods): if iteration < period: return i return None
[文档]@PARAM_SCHEDULERS.register_module() class ReduceOnPlateauParamScheduler(_ParamScheduler): """Reduce the parameters of each parameter group when a metric has stopped improving. Models often benefit from reducing the parameters by a factor of 2-10 once learning stagnates. This scheduler reads a metrics quantity and if no improvement is seen for a ``patience`` number of epochs, the parameters are reduced. The implementation is motivated by `PyTorch ReduceLROnPlateau`_. Args: optimizer (Optimizer or BaseOptimWrapper): optimizer or Wrapped optimizer. param_name (str): Name of the parameter to be adjusted, such as ``lr``, ``momentum``. monitor (str): The name of the metric to measure whether the performance of the model is improved. rule (str): One of `less`, `greater`. In `less` rule, parameters will be reduced when the quantity monitored has stopped decreasing; in `greater` rule it will be reduced when the quantity monitored has stopped increasing. Defaults to 'less'. The ``rule`` is the renaming of ``mode`` in pytorch. factor (float): Factor by which the parameters will be reduced. new_param = param * factor. Defaults to 0.1. patience (int): Number of epochs with no improvement after which parameters will be reduced. For example, if ``patience = 2``, then we will ignore the first 2 epochs with no improvement, and will only decrease the parameters after the 3rd epoch if the monitor value still hasn't improved then. Defaults to 10. threshold (float): Threshold for measuring the new optimum, to only focus on significant changes. Defaults to 1e-4. threshold_rule (str): One of `rel`, `abs`. In `rel` rule, dynamic_threshold = best * ( 1 + threshold ) in 'greater' rule or best * ( 1 - threshold ) in `less` rule. In `abs` rule, dynamic_threshold = best + threshold in `greater` rule or best - threshold in `less` rule. Defaults to 'rel'. cooldown (int): Number of epochs to wait before resuming normal operation after parameters have been reduced. Defaults to 0. min_value (float or list[float]): A scalar or a sequence of scalars. A lower bound on the parameters of each parameter group respectively. Defaults to 0. . eps (float): Minimal decay applied to parameters. If the difference between new and old parameters are smaller than eps, the update is ignored. Defaults to 1e-8. begin (int): Step at which to start triggering the scheduler to monitor in val within the interval calculated according to epoch of training. Defaults to 0. end (int): Step at which to stop triggering the scheduler to monitor in val within the interval calculated according to epoch of training. Defaults to INF. last_step (int): The index of last step. Used for resume without state dict. Defaults to -1. by_epoch (bool): Whether the scheduled parameters are updated by epochs. Defaults to True. verbose (bool): Whether to print the value for each update. Defaults to False. .. _PyTorch ReduceLROnPlateau: https://github.com/pytorch/pytorch/blob/master/torch/optim/lr_scheduler.py """ need_val_args = True def __init__(self, optimizer: OptimizerType, param_name: str, monitor: str = 'loss', rule: str = 'less', factor: float = 0.1, patience: int = 10, threshold: float = 1e-4, threshold_rule: str = 'rel', cooldown: int = 0, min_value: Union[float, Sequence[float]] = 0., eps: float = 1e-8, begin: int = 0, end: int = INF, last_step: int = -1, by_epoch: bool = True, verbose: bool = False): # Attach optimizer if not isinstance(optimizer, (Optimizer, BaseOptimWrapper)): raise TypeError('``optimizer`` should be an Optimizer,' 'but got {}'.format(type(optimizer).__name__)) self.optimizer = optimizer self.param_name = param_name if end <= begin: raise ValueError('end should be larger than begin, but got' ' begin={}, end={}'.format(begin, end)) self.begin = begin self.end = end assert by_epoch, \ f'Now {type(self).__name__} only support by_epoch=True' self.by_epoch = by_epoch assert isinstance(last_step, int) and last_step >= -1 # Initialize valid step count and base values if last_step == -1: for group in optimizer.param_groups: # If the param is never be scheduled, record the current value # as the initial value. group.setdefault(f'initial_{param_name}', group[param_name]) else: for i, group in enumerate(optimizer.param_groups): if f'initial_{param_name}' not in group: raise KeyError( f"param 'initial_{param_name}' is not specified " 'in param_groups[{}] when resuming an optimizer'. format(i)) self.last_step = last_step self._global_step = 0 self.verbose = verbose if factor >= 1.0: raise ValueError('Factor should be < 1.0.') self.factor = factor # This code snippet handles compatibility with the optimizer wrapper. # The optimizer wrapper includes an additional parameter to record the # base learning rate (lr) which is not affected by the paramwise_cfg. # By retrieving the base lr, we can obtain the actual base lr that # reflects the learning progress. if isinstance(optimizer, BaseOptimWrapper): raw_optimizer = optimizer.optimizer else: raw_optimizer = optimizer if isinstance(min_value, (list, tuple)): if len(min_value) != len(raw_optimizer.param_groups): raise ValueError('expected {} min_lrs, got {}'.format( len(raw_optimizer.param_groups), len(min_value))) self.min_values = list(min_value) # Consider the `min_value` of the last param_groups # as the base setting. And we only add this value when # the optimizer is OptimWrapper. if isinstance(optimizer, BaseOptimWrapper) and \ optimizer.base_param_settings is not None: # type: ignore self.min_values.append(self.min_values[-1]) else: self.min_values = [min_value] * len( # type: ignore optimizer.param_groups) self.patience = patience self.cooldown = cooldown self.cooldown_counter = 0 self.rule_worse = None # the worse value for the chosen mode self.best = None self.num_bad_epochs = 0 self.eps = eps self.monitor = monitor self._init_is_better( rule=rule, threshold=threshold, threshold_rule=threshold_rule) self._reset() # remove call self.step() and init self._global_step = 0 self._last_value = [ group[self.param_name] for group in self.optimizer.param_groups ]
[文档] def step(self, metrics=None): """Adjusts the parameter value of each parameter group based on the specified schedule. Args: metrics (Dict[str, float], optional): Evaluation results of all metrics on validation dataset. The keys are the names of the metrics, and the values are corresponding results. Defaults to None. """ if metrics is None: # only to count self._global_step self._global_step += 1 return if not isinstance(metrics, dict): raise TypeError('metrics type should be dict,' f' but got type {type(metrics)}') # Compute parameter value per param group in the effective range if self.begin <= self._global_step < self.end: self.last_step += 1 # convert `metric` to float, in case it's a zero-dim Tensor metric = metrics.get(self.monitor, None) if metric is not None: if self._is_better(metric, self.best): self.best = metric self.num_bad_epochs = 0 else: self.num_bad_epochs += 1 if self._in_cooldown(): self.cooldown_counter -= 1 self.num_bad_epochs = 0 # ignore bad epochs in cooldown if self.num_bad_epochs > self.patience: values = self._get_value() for i, data in enumerate( zip(self.optimizer.param_groups, values)): param_group, value = data if param_group[self.param_name] - value > self.eps: param_group[self.param_name] = value self.print_value(self.verbose, i, value) self.cooldown_counter = self.cooldown self.num_bad_epochs = 0 else: raise KeyError(f'Excepted key in {list(metrics.keys())},' f' but got key {self.monitor} is not in dict') self._last_value = [ group[self.param_name] for group in self.optimizer.param_groups ]
[文档] def print_value(self, is_verbose: bool, group: int, value: float) -> None: """Display the current parameter value. Args: is_verbose (bool): Whether to print the value. group (int): The index of the current ``param_group``. value (float): The parameter value. """ if is_verbose: step_name = 'epoch' if self.by_epoch else 'iter' print_log( f'Adjusting parameter value of group {group} to {value:.4e} ' f'in {step_name} {self.last_step}.', logger='current')
def _get_value(self): """Compute value using chainable form of the scheduler.""" values = [ float(group[self.param_name]) * self.factor for group in self.optimizer.param_groups ] return [max(v, min_v) for v, min_v in zip(values, self.min_values)] def _in_cooldown(self): """Judge whether it is in cooldown.""" return self.cooldown_counter > 0 def _is_better(self, a, best): """Judge whether the monitor value is better.""" if self.rule == 'less' and self.threshold_rule == 'rel': rel_epsilon = 1. - self.threshold return a < best * rel_epsilon elif self.rule == 'less' and self.threshold_rule == 'abs': return a < best - self.threshold elif self.rule == 'greater' and self.threshold_rule == 'rel': rel_epsilon = self.threshold + 1. return a > best * rel_epsilon else: # rule == 'greater' and epsilon_mode == 'abs': return a > best + self.threshold def _init_is_better(self, rule, threshold, threshold_rule): """Initialize rule and its associated values.""" if threshold < 0: raise ValueError(f'threshold {threshold} should be >= 0.') if rule not in {'less', 'greater'}: raise ValueError(f'mode {rule} is unknown!') if threshold_rule not in {'rel', 'abs'}: raise ValueError(f'threshold mode {threshold_rule}' ' is unknown!') if rule == 'less': self.rule_worse = INF else: # rule == 'greater': self.rule_worse = -INF self.rule = rule self.threshold = threshold self.threshold_rule = threshold_rule def _reset(self): """Resets num_bad_epochs counter and cooldown counter.""" self.best = self.rule_worse self.cooldown_counter = 0 self.num_bad_epochs = 0