Shortcuts

Logging

Runner will produce a lot of logs during the running process, such as loss, iteration time, learning rate, etc. MMEngine implements a flexible logging system that allows us to choose different types of log statistical methods when configuring the runner. It could help us set/get the recorded log at any location in the code.

Flexible Logging System

Logging system is configured by passing a LogProcessor to the runner. If no log processor is passed, the runner will use the default log processor, which is equivalent to:

log_processor = dict(window_size=10, by_epoch=True, custom_cfg=None, num_digits=4)

The format of the output log is as follows:

import torch
import torch.nn as nn
from torch.utils.data import DataLoader

from mmengine.runner import Runner
from mmengine.model import BaseModel

train_dataset = [(torch.ones(1, 1), torch.ones(1, 1))] * 50
train_dataloader = DataLoader(train_dataset, batch_size=2)


class ToyModel(BaseModel):
    def __init__(self) -> None:
        super().__init__()
        self.linear = nn.Linear(1, 1)

    def forward(self, img, label, mode):
        feat = self.linear(img)
        loss1 = (feat - label).pow(2)
        loss2 = (feat - label).abs()
        return dict(loss1=loss1, loss2=loss2)

runner = Runner(
    model=ToyModel(),
    work_dir='tmp_dir',
    train_dataloader=train_dataloader,
    train_cfg=dict(by_epoch=True, max_epochs=1),
    optim_wrapper=dict(optimizer=dict(type='SGD', lr=0.01))
)
runner.train()
08/21 02:58:41 - mmengine - INFO - Epoch(train) [1][10/25]  lr: 1.0000e-02  eta: 0:00:00  time: 0.0019  data_time: 0.0004  loss1: 0.8381  loss2: 0.9007  loss: 1.7388
08/21 02:58:41 - mmengine - INFO - Epoch(train) [1][20/25]  lr: 1.0000e-02  eta: 0:00:00  time: 0.0029  data_time: 0.0010  loss1: 0.1978  loss2: 0.4312  loss: 0.6290

LogProcessor will output the log in the following format:

  • The prefix of the log:

    • epoch mode(by_epoch=True): Epoch(train) [{current_epoch}/{current_iteration}]/{dataloader_length}

    • iteration mode(by_epoch=False): Iter(train) [{current_iteration}/{max_iteration}])

  • Learning rate (lr): The learning rate of the last iteration.

  • Time:

    • time: The averaged time for inference of the last window_size iterations.

    • data_time: The averaged time for loading data of the last window_size iterations.

    • eta: The estimated time of arrival to finish the training.

  • Loss: The averaged loss output by model of the last window_size iterations.

Note

window_size=10 by default.

The significant digits(num_digits) of the log is 4 by default.

Output the value of all custom logs at the last iteration by default.

Warning

log_processor outputs the epoch based log by default(by_epoch=True). To get an expected log matched with the train_cfg, we should set the same value for by_epoch in train_cfg and log_processor.

Based on the rules above, the code snippet will count the average value of the loss1 and the loss2 every 10 iterations.

If we want to count the global average value of loss1, we can set custom_cfg like this:

runner = Runner(
    model=ToyModel(),
    work_dir='tmp_dir',
    train_dataloader=train_dataloader,
    train_cfg=dict(by_epoch=True, max_epochs=1),
    optim_wrapper=dict(optimizer=dict(type='SGD', lr=0.01)),
    log_processor=dict(
        custom_cfg=[
            dict(data_src='loss1',  # original loss name: loss1
                 method_name='mean',  # statistical method: mean
                 window_size='global')])  # window_size: global
)
runner.train()
08/21 02:58:49 - mmengine - INFO - Epoch(train) [1][10/25]  lr: 1.0000e-02  eta: 0:00:00  time: 0.0026  data_time: 0.0007  loss1: 0.7381  loss2: 0.8446  loss: 1.5827
08/21 02:58:49 - mmengine - INFO - Epoch(train) [1][20/25]  lr: 1.0000e-02  eta: 0:00:00  time: 0.0030  data_time: 0.0012  loss1: 0.4521  loss2: 0.3939  loss: 0.5600

data_src means the original loss name, method_name means the statistic method, window_size means the window size of the statistic method. Since we want to count the global average value of loss1, we set window_size to global.

Currently, MMEngine supports the following statistical methods:

statistic method arguments function
mean window_size statistic the average log of the last `window_size`
min window_size statistic the minimum log of the last `window_size`
max window_size statistic the maximum log of the last `window_size`
current / statistic the latest

window_size mentioned above could be:

  • int number: The window size of the statistic method.

  • global: Equivalent to window_size=cur_iteration.

  • epoch: Equivalent to window_size=len(dataloader).

If we want to statistic the average value of loss1 of the last 10 iterations, and also want to statistic the global average value of loss1. We need to set log_name additionally:

runner = Runner(
    model=ToyModel(),
    work_dir='tmp_dir',
    train_dataloader=train_dataloader,
    train_cfg=dict(by_epoch=True, max_epochs=1),
    optim_wrapper=dict(optimizer=dict(type='SGD', lr=0.01)),
    log_processor=dict(
        custom_cfg=[
            # log_name means the second name of loss1
            dict(data_src='loss1', log_name='loss1_global', method_name='mean', window_size='global')])
)
runner.train()
08/21 18:39:32 - mmengine - INFO - Epoch(train) [1][10/25]  lr: 1.0000e-02  eta: 0:00:00  time: 0.0016  data_time: 0.0004  loss1: 0.1512  loss2: 0.3751  loss: 0.5264  loss1_global: 0.1512
08/21 18:39:32 - mmengine - INFO - Epoch(train) [1][20/25]  lr: 1.0000e-02  eta: 0:00:00  time: 0.0051  data_time: 0.0036  loss1: 0.0113  loss2: 0.0856  loss: 0.0970  loss1_global: 0.0813

Similarly, we can also statistic the global/local maximum value of loss at the same time.

runner = Runner(
    model=ToyModel(),
    work_dir='tmp_dir',
    train_dataloader=train_dataloader,
    train_cfg=dict(by_epoch=True, max_epochs=1),
    optim_wrapper=dict(optimizer=dict(type='SGD', lr=0.01)),
    log_processor=dict(custom_cfg=[
        # statistic loss1 with the local maximum value
        dict(data_src='loss1',
             log_name='loss1_local_max',
             window_size=10,
             method_name='max'),
        # statistic loss1 with the global maximum value
        dict(
            data_src='loss1',
            log_name='loss1_global_max',
            method_name='max',
            window_size='global')
    ]))
runner.train()
08/21 03:17:26 - mmengine - INFO - Epoch(train) [1][10/25]  lr: 1.0000e-02  eta: 0:00:00  time: 0.0021  data_time: 0.0006  loss1: 1.8495  loss2: 1.3427  loss: 3.1922  loss1_local_max: 2.8872  loss1_global_max: 2.8872
08/21 03:17:26 - mmengine - INFO - Epoch(train) [1][20/25]  lr: 1.0000e-02  eta: 0:00:00  time: 0.0024  data_time: 0.0010  loss1: 0.5464  loss2: 0.7251  loss: 1.2715  loss1_local_max: 2.8872  loss1_global_max: 2.8872

More examples can be found in log_processor.

Customize log

The logging system could not only log the loss, lr, .etc but also collect and output the custom log. For example, if we want to statistic the intermediate loss:

from mmengine.logging import MessageHub


class ToyModel(BaseModel):

    def __init__(self) -> None:
        super().__init__()
        self.linear = nn.Linear(1, 1)

    def forward(self, img, label, mode):
        feat = self.linear(img)
        loss_tmp = (feat - label).abs()
        loss = loss_tmp.pow(2)

        message_hub = MessageHub.get_current_instance()
        # update the intermediate `loss_tmp` in the message hub
        message_hub.update_scalar('train/loss_tmp', loss_tmp.sum())
        return dict(loss=loss)


runner = Runner(
    model=ToyModel(),
    work_dir='tmp_dir',
    train_dataloader=train_dataloader,
    train_cfg=dict(by_epoch=True, max_epochs=1),
    optim_wrapper=dict(optimizer=dict(type='SGD', lr=0.01)),
    log_processor=dict(
        custom_cfg=[
        # statistic the loss_tmp with the averaged value
            dict(
                data_src='loss_tmp',
                window_size=10,
                method_name='mean')
        ]
    )
)
runner.train()
08/21 03:40:31 - mmengine - INFO - Epoch(train) [1][10/25]  lr: 1.0000e-02  eta: 0:00:00  time: 0.0026  data_time: 0.0008  loss_tmp: 0.0097  loss: 0.0000
08/21 03:40:31 - mmengine - INFO - Epoch(train) [1][20/25]  lr: 1.0000e-02  eta: 0:00:00  time: 0.0028  data_time: 0.0013  loss_tmp: 0.0065  loss: 0.0000

The custom log will be recorded by updating the messagehub:

  1. Calling MessageHub.get_current_instance() to get the message of runner

  2. Calling MessageHub.update_scalar to update the custom log. The first argument means the log name with the mode prefix(train/val/test). The output log will only retain the log name without the mode prefix.

  3. Configure statistic method of loss_tmp in log_processor. If it is not configured, only the latest value of loss_tmp will be logged.

Export the debug log

Set log_level=DEBUG for runner, and the debug log will be exported to the work_dir:

runner = Runner(
    model=ToyModel(),
    work_dir='tmp_dir',
    train_dataloader=train_dataloader,
    log_level='DEBUG',
    train_cfg=dict(by_epoch=True, max_epochs=1),
    optim_wrapper=dict(optimizer=dict(type='SGD', lr=0.01)))
runner.train()
08/21 18:16:22 - mmengine - DEBUG - Get class `LocalVisBackend` from "vis_backend" registry in "mmengine"
08/21 18:16:22 - mmengine - DEBUG - An `LocalVisBackend` instance is built from registry, its implementation can be found in mmengine.visualization.vis_backend
08/21 18:16:22 - mmengine - DEBUG - Get class `RuntimeInfoHook` from "hook" registry in "mmengine"
08/21 18:16:22 - mmengine - DEBUG - An `RuntimeInfoHook` instance is built from registry, its implementation can be found in mmengine.hooks.runtime_info_hook
08/21 18:16:22 - mmengine - DEBUG - Get class `IterTimerHook` from "hook" registry in "mmengine"
...

Besides, logs of different ranks will be saved in debug mode if you are training your model with the shared storage. The hierarchy of the log is as follows:

./tmp
├── tmp.log
├── tmp_rank1.log
├── tmp_rank2.log
├── tmp_rank3.log
├── tmp_rank4.log
├── tmp_rank5.log
├── tmp_rank6.log
└── tmp_rank7.log
...
└── tmp_rank63.log

The log of Multiple machine with independent storage:

# device: 0:
work_dir/
└── exp_name_logs
    ├── exp_name.log
    ├── exp_name_rank1.log
    ├── exp_name_rank2.log
    ├── exp_name_rank3.log
    ...
    └── exp_name_rank7.log

# device: 7:
work_dir/
└── exp_name_logs
    ├── exp_name_rank56.log
    ├── exp_name_rank57.log
    ├── exp_name_rank58.log
    ...
    └── exp_name_rank63.log
Read the Docs v: latest
Versions
latest
stable
v0.10.5
v0.10.4
v0.10.3
v0.10.2
v0.10.1
v0.10.0
v0.9.1
v0.9.0
v0.8.5
v0.8.4
v0.8.3
v0.8.2
v0.8.1
v0.8.0
v0.7.4
v0.7.3
v0.7.2
v0.7.1
v0.7.0
v0.6.0
v0.5.0
v0.4.0
v0.3.0
v0.2.0
Downloads
epub
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.