Source code for mmengine.model.test_time_aug
# Copyright (c) OpenMMLab. All rights reserved.
from abc import abstractmethod
from typing import Dict, List, Optional, Union
import torch
import torch.nn as nn
from mmengine.registry import MODELS
from mmengine.structures import BaseDataElement
from .base_model import BaseModel
# multi-batch inputs processed by different augmentations from the same batch.
EnhancedBatchInputs = List[Union[torch.Tensor, List[torch.Tensor]]]
# multi-batch data samples processed by different augmentations from the same
# batch. The inner list stands for different augmentations and the outer list
# stands for batch.
EnhancedBatchDataSamples = List[List[BaseDataElement]]
DATA_BATCH = Union[Dict[str, Union[EnhancedBatchInputs,
EnhancedBatchDataSamples]], tuple, dict]
MergedDataSamples = List[BaseDataElement]
[docs]@MODELS.register_module()
class BaseTTAModel(BaseModel):
"""Base model for inference with test-time augmentation.
``BaseTTAModel`` is a wrapper for inference given multi-batch data.
It implements the :meth:`test_step` for multi-batch data inference.
``multi-batch`` data means data processed by different augmentation
from the same batch.
During test time augmentation, the data processed by
:obj:`mmcv.transforms.TestTimeAug`, and then collated by
``pseudo_collate`` will have the following format:
.. code-block::
result = dict(
inputs=[
[image1_aug1, image2_aug1],
[image1_aug2, image2_aug2]
],
data_samples=[
[data_sample1_aug1, data_sample2_aug1],
[data_sample1_aug2, data_sample2_aug2],
]
)
``image{i}_aug{j}`` means the i-th image of the batch, which is
augmented by the j-th augmentation.
``BaseTTAModel`` will collate the data to:
.. code-block::
data1 = dict(
inputs=[image1_aug1, image2_aug1],
data_samples=[data_sample1_aug1, data_sample2_aug1]
)
data2 = dict(
inputs=[image1_aug2, image2_aug2],
data_samples=[data_sample1_aug2, data_sample2_aug2]
)
``data1`` and ``data2`` will be passed to model, and the results will be
merged by :meth:`merge_preds`.
Note:
:meth:`merge_preds` is an abstract method, all subclasses should
implement it.
Warning:
If ``data_preprocessor`` is not None, it will overwrite the model's
``data_preprocessor``.
Args:
module (dict or nn.Module): Tested model.
data_preprocessor (dict or :obj:`BaseDataPreprocessor`, optional):
If model does not define ``data_preprocessor``, it will be the
default value for model.
"""
def __init__(
self,
module: Union[dict, nn.Module],
data_preprocessor: Union[dict, nn.Module, None] = None,
):
super().__init__()
if isinstance(module, nn.Module):
self.module = module
elif isinstance(module, dict):
if data_preprocessor is not None:
module['data_preprocessor'] = data_preprocessor
self.module = MODELS.build(module)
else:
raise TypeError('The type of module should be a `nn.Module` '
f'instance or a dict, but got {module}')
assert hasattr(self.module, 'test_step'), (
'Model wrapped by BaseTTAModel must implement `test_step`!')
[docs] @abstractmethod
def merge_preds(self, data_samples_list: EnhancedBatchDataSamples) \
-> MergedDataSamples:
"""Merge predictions of enhanced data to one prediction.
Args:
data_samples_list (EnhancedBatchDataSamples): List of predictions
of all enhanced data.
Returns:
List[BaseDataElement]: Merged prediction.
"""
[docs] def test_step(self, data):
"""Get predictions of each enhanced data, a multiple predictions.
Args:
data (DataBatch): Enhanced data batch sampled from dataloader.
Returns:
MergedDataSamples: Merged prediction.
"""
data_list: Union[List[dict], List[list]]
if isinstance(data, dict):
num_augs = len(data[next(iter(data))])
data_list = [{key: value[idx]
for key, value in data.items()}
for idx in range(num_augs)]
elif isinstance(data, (tuple, list)):
num_augs = len(data[0])
data_list = [[_data[idx] for _data in data]
for idx in range(num_augs)]
else:
raise TypeError('data given by dataLoader should be a dict, '
f'tuple or a list, but got {type(data)}')
predictions = []
for data in data_list: # type: ignore
predictions.append(self.module.test_step(data))
return self.merge_preds(list(zip(*predictions))) # type: ignore
[docs] def forward(self,
inputs: torch.Tensor,
data_samples: Optional[list] = None,
mode: str = 'tensor') -> Union[Dict[str, torch.Tensor], list]:
"""``BaseTTAModel.forward`` should not be called."""
raise NotImplementedError(
'`BaseTTAModel.forward` will not be called during training or'
'testing. Please call `test_step` instead. If you want to use'
'`BaseTTAModel.forward`, please implement this method')