Source code for mmengine.optim.optimizer.default_constructor

# Copyright (c) OpenMMLab. All rights reserved.
import inspect
import logging
from typing import List, Optional, Union

import torch
import torch.nn as nn
from torch.nn import GroupNorm, LayerNorm

from mmengine.logging import print_log
from mmengine.registry import (OPTIM_WRAPPER_CONSTRUCTORS, OPTIM_WRAPPERS,
from mmengine.utils import is_list_of
from mmengine.utils.dl_utils import mmcv_full_available
from mmengine.utils.dl_utils.parrots_wrapper import _BatchNorm, _InstanceNorm
from .optimizer_wrapper import OptimWrapper

[docs]@OPTIM_WRAPPER_CONSTRUCTORS.register_module() class DefaultOptimWrapperConstructor: """Default constructor for optimizers. By default, each parameter share the same optimizer settings, and we provide an argument ``paramwise_cfg`` to specify parameter-wise settings. It is a dict and may contain the following fields: - ``custom_keys`` (dict): Specified parameters-wise settings by keys. If one of the keys in ``custom_keys`` is a substring of the name of one parameter, then the setting of the parameter will be specified by ``custom_keys[key]`` and other setting like ``bias_lr_mult`` etc. will be ignored. It should be noted that the aforementioned ``key`` is the longest key that is a substring of the name of the parameter. If there are multiple matched keys with the same length, then the key with lower alphabet order will be chosen. ``custom_keys[key]`` should be a dict and may contain fields ``lr_mult`` and ``decay_mult``. See Example 2 below. - ``bias_lr_mult`` (float): It will be multiplied to the learning rate for all bias parameters (except for those in normalization layers and offset layers of DCN). - ``bias_decay_mult`` (float): It will be multiplied to the weight decay for all bias parameters (except for those in normalization layers, depthwise conv layers, offset layers of DCN). - ``norm_decay_mult`` (float): It will be multiplied to the weight decay for all weight and bias parameters of normalization layers. - ``flat_decay_mult`` (float): It will be multiplied to the weight decay for all one-dimensional parameters - ``dwconv_decay_mult`` (float): It will be multiplied to the weight decay for all weight and bias parameters of depthwise conv layers. - ``dcn_offset_lr_mult`` (float): It will be multiplied to the learning rate for parameters of offset layer in the deformable convs of a model. - ``bypass_duplicate`` (bool): If true, the duplicate parameters would not be added into optimizer. Defaults to False. Note: 1. If the option ``dcn_offset_lr_mult`` is used, the constructor will override the effect of ``bias_lr_mult`` in the bias of offset layer. So be careful when using both ``bias_lr_mult`` and ``dcn_offset_lr_mult``. If you wish to apply both of them to the offset layer in deformable convs, set ``dcn_offset_lr_mult`` to the original ``dcn_offset_lr_mult`` * ``bias_lr_mult``. 2. If the option ``dcn_offset_lr_mult`` is used, the constructor will apply it to all the DCN layers in the model. So be careful when the model contains multiple DCN layers in places other than backbone. Args: optim_wrapper_cfg (dict): The config dict of the optimizer wrapper. Required fields of ``optim_wrapper_cfg`` are - ``type``: class name of the OptimizerWrapper - ``optimizer``: The configuration of optimizer. Optional fields of ``optim_wrapper_cfg`` are - any arguments of the corresponding optimizer wrapper type, e.g., accumulative_counts, clip_grad, etc. Required fields of ``optimizer`` are - `type`: class name of the optimizer. Optional fields of ``optimizer`` are - any arguments of the corresponding optimizer type, e.g., lr, weight_decay, momentum, etc. paramwise_cfg (dict, optional): Parameter-wise options. Example 1: >>> model = torch.nn.modules.Conv1d(1, 1, 1) >>> optim_wrapper_cfg = dict( >>> dict(type='OptimWrapper', optimizer=dict(type='SGD', lr=0.01, >>> momentum=0.9, weight_decay=0.0001)) >>> paramwise_cfg = dict(norm_decay_mult=0.) >>> optim_wrapper_builder = DefaultOptimWrapperConstructor( >>> optim_wrapper_cfg, paramwise_cfg) >>> optim_wrapper = optim_wrapper_builder(model) Example 2: >>> # assume model have attribute model.backbone and model.cls_head >>> optim_wrapper_cfg = dict(type='OptimWrapper', optimizer=dict( >>> type='SGD', lr=0.01, weight_decay=0.95)) >>> paramwise_cfg = dict(custom_keys={ >>> 'backbone': dict(lr_mult=0.1, decay_mult=0.9)}) >>> optim_wrapper_builder = DefaultOptimWrapperConstructor( >>> optim_wrapper_cfg, paramwise_cfg) >>> optim_wrapper = optim_wrapper_builder(model) >>> # Then the `lr` and `weight_decay` for model.backbone is >>> # (0.01 * 0.1, 0.95 * 0.9). `lr` and `weight_decay` for >>> # model.cls_head is (0.01, 0.95). """ def __init__(self, optim_wrapper_cfg: dict, paramwise_cfg: Optional[dict] = None): if not isinstance(optim_wrapper_cfg, dict): raise TypeError('optimizer_cfg should be a dict', f'but got {type(optim_wrapper_cfg)}') assert 'optimizer' in optim_wrapper_cfg, ( '`optim_wrapper_cfg` must contain "optimizer" config') self.optim_wrapper_cfg = optim_wrapper_cfg.copy() self.optimizer_cfg = self.optim_wrapper_cfg.pop('optimizer') self.paramwise_cfg = {} if paramwise_cfg is None else paramwise_cfg self.base_lr = self.optimizer_cfg.get('lr', None) self.base_wd = self.optimizer_cfg.get('weight_decay', None) self._validate_cfg() def _validate_cfg(self) -> None: """verify the correctness of the config.""" if not isinstance(self.paramwise_cfg, dict): raise TypeError('paramwise_cfg should be None or a dict, ' f'but got {type(self.paramwise_cfg)}') if 'custom_keys' in self.paramwise_cfg: if not isinstance(self.paramwise_cfg['custom_keys'], dict): raise TypeError( 'If specified, custom_keys must be a dict, ' f'but got {type(self.paramwise_cfg["custom_keys"])}') if self.base_wd is None: for key in self.paramwise_cfg['custom_keys']: if 'decay_mult' in self.paramwise_cfg['custom_keys'][key]: raise ValueError('base_wd should not be None') # get base lr and weight decay # weight_decay must be explicitly specified if mult is specified if ('bias_decay_mult' in self.paramwise_cfg or 'norm_decay_mult' in self.paramwise_cfg or 'dwconv_decay_mult' in self.paramwise_cfg): if self.base_wd is None: raise ValueError('base_wd should not be None') def _is_in(self, param_group: dict, param_group_list: list) -> bool: """check whether the `param_group` is in the`param_group_list`""" assert is_list_of(param_group_list, dict) param = set(param_group['params']) param_set = set() for group in param_group_list: param_set.update(set(group['params'])) return not param.isdisjoint(param_set)
[docs] def add_params(self, params: List[dict], module: nn.Module, prefix: str = '', is_dcn_module: Optional[Union[int, float]] = None) -> None: """Add all parameters of module to the params list. The parameters of the given module will be added to the list of param groups, with specific rules defined by paramwise_cfg. Args: params (list[dict]): A list of param groups, it will be modified in place. module (nn.Module): The module to be added. prefix (str): The prefix of the module is_dcn_module (int|float|None): If the current module is a submodule of DCN, `is_dcn_module` will be passed to control conv_offset layer's learning rate. Defaults to None. """ # get param-wise options custom_keys = self.paramwise_cfg.get('custom_keys', {}) # first sort with alphabet order and then sort with reversed len of str sorted_keys = sorted(sorted(custom_keys.keys()), key=len, reverse=True) bias_lr_mult = self.paramwise_cfg.get('bias_lr_mult', None) bias_decay_mult = self.paramwise_cfg.get('bias_decay_mult', None) norm_decay_mult = self.paramwise_cfg.get('norm_decay_mult', None) dwconv_decay_mult = self.paramwise_cfg.get('dwconv_decay_mult', None) flat_decay_mult = self.paramwise_cfg.get('flat_decay_mult', None) bypass_duplicate = self.paramwise_cfg.get('bypass_duplicate', False) dcn_offset_lr_mult = self.paramwise_cfg.get('dcn_offset_lr_mult', None) # special rules for norm layers and depth-wise conv layers is_norm = isinstance(module, (_BatchNorm, _InstanceNorm, GroupNorm, LayerNorm)) is_dwconv = ( isinstance(module, torch.nn.Conv2d) and module.in_channels == module.groups) for name, param in module.named_parameters(recurse=False): param_group = {'params': [param]} if bypass_duplicate and self._is_in(param_group, params): print_log( f'{prefix} is duplicate. It is skipped since ' f'bypass_duplicate={bypass_duplicate}', logger='current', level=logging.WARNING) continue if not param.requires_grad: print_log((f'{prefix}.{name} is skipped since its ' f'requires_grad={param.requires_grad}'), logger='current', level=logging.WARNING) continue # if the parameter match one of the custom keys, ignore other rules is_custom = False for key in sorted_keys: if key in f'{prefix}.{name}': is_custom = True lr_mult = custom_keys[key].get('lr_mult', 1.) param_group['lr'] = self.base_lr * lr_mult if self.base_wd is not None: decay_mult = custom_keys[key].get('decay_mult', 1.) param_group['weight_decay'] = self.base_wd * decay_mult # add custom settings to param_group for k, v in custom_keys[key].items(): param_group[k] = v break if not is_custom: # bias_lr_mult affects all bias parameters # except for norm.bias dcn.conv_offset.bias if name == 'bias' and not ( is_norm or is_dcn_module) and bias_lr_mult is not None: param_group['lr'] = self.base_lr * bias_lr_mult if (prefix.find('conv_offset') != -1 and is_dcn_module and dcn_offset_lr_mult is not None and isinstance(module, torch.nn.Conv2d)): # deal with both dcn_offset's bias & weight param_group['lr'] = self.base_lr * dcn_offset_lr_mult # apply weight decay policies if self.base_wd is not None: # norm decay if is_norm and norm_decay_mult is not None: param_group[ 'weight_decay'] = self.base_wd * norm_decay_mult # bias lr and decay elif (name == 'bias' and not is_dcn_module and bias_decay_mult is not None): param_group[ 'weight_decay'] = self.base_wd * bias_decay_mult # depth-wise conv elif is_dwconv and dwconv_decay_mult is not None: param_group[ 'weight_decay'] = self.base_wd * dwconv_decay_mult # flatten parameters except dcn offset elif (param.ndim == 1 and not is_dcn_module and flat_decay_mult is not None): param_group[ 'weight_decay'] = self.base_wd * flat_decay_mult params.append(param_group) for key, value in param_group.items(): if key == 'params': continue full_name = f'{prefix}.{name}' if prefix else name print_log( f'paramwise_options -- {full_name}:{key}={value}', logger='current') if mmcv_full_available(): from mmcv.ops import DeformConv2d, ModulatedDeformConv2d is_dcn_module = isinstance(module, (DeformConv2d, ModulatedDeformConv2d)) else: is_dcn_module = False for child_name, child_mod in module.named_children(): child_prefix = f'{prefix}.{child_name}' if prefix else child_name self.add_params( params, child_mod, prefix=child_prefix, is_dcn_module=is_dcn_module)
def __call__(self, model: nn.Module) -> OptimWrapper: if hasattr(model, 'module'): model = model.module optim_wrapper_cfg = self.optim_wrapper_cfg.copy() optim_wrapper_cfg.setdefault('type', 'OptimWrapper') optimizer_cfg = self.optimizer_cfg.copy() optimizer_cls = self.optimizer_cfg['type'] # Optimizer like HybridAdam in colossalai requires the argument name # `model_params` rather than `params`. Here we get the first argument # name and fill it with the model parameters. if isinstance(optimizer_cls, str): with OPTIMIZERS.switch_scope_and_registry(None) as registry: optimizer_cls = registry.get(self.optimizer_cfg['type']) fisrt_arg_name = next( iter(inspect.signature(optimizer_cls).parameters)) # if no paramwise option is specified, just use the global setting if not self.paramwise_cfg: optimizer_cfg[fisrt_arg_name] = model.parameters() optimizer = else: # set param-wise lr and weight decay recursively params: List = [] self.add_params(params, model) optimizer_cfg[fisrt_arg_name] = params optimizer = optim_wrapper = optim_wrapper_cfg, default_args=dict(optimizer=optimizer)) return optim_wrapper

© Copyright 2022, mmengine contributors. Revision 66fb81f7.

Built with Sphinx using a theme provided by Read the Docs.
Read the Docs v: latest
On Read the Docs
Project Home

Free document hosting provided by Read the Docs.