Source code for mmengine.runner._flexible_runner
# Copyright (c) OpenMMLab. All rights reserved.
import copy
import logging
import os.path as osp
import pickle
import warnings
from functools import partial
from typing import Callable, Dict, List, Optional, Union
import torch.nn as nn
from torch.utils.data import DataLoader
import mmengine
from mmengine._strategy import BaseStrategy
from mmengine.config import Config, ConfigDict
from mmengine.dataset import worker_init_fn as default_worker_init_fn
from mmengine.dist import get_rank, infer_launcher, master_only
from mmengine.evaluator import Evaluator
from mmengine.fileio import FileClient, join_path
from mmengine.hooks import Hook
from mmengine.logging import MessageHub, print_log
from mmengine.optim import OptimWrapper, OptimWrapperDict, _ParamScheduler
from mmengine.registry import (DATA_SAMPLERS, DATASETS, EVALUATOR, FUNCTIONS,
HOOKS, LOG_PROCESSORS, LOOPS, RUNNERS,
STRATEGIES, VISUALIZERS, DefaultScope)
from mmengine.utils import digit_version
from mmengine.utils.dl_utils import TORCH_VERSION
from mmengine.visualization import Visualizer
from .base_loop import BaseLoop
from .checkpoint import find_latest_checkpoint
from .log_processor import LogProcessor
from .loops import EpochBasedTrainLoop, IterBasedTrainLoop, TestLoop, ValLoop
from .priority import Priority, get_priority
from .utils import _get_batch_size
ConfigType = Union[Dict, Config, ConfigDict]
ParamSchedulerType = Union[List[_ParamScheduler], Dict[str,
List[_ParamScheduler]]]
OptimWrapperType = Union[OptimWrapper, OptimWrapperDict]
[docs]@RUNNERS.register_module()
class FlexibleRunner:
"""A training helper for PyTorch.
Runner object can be built from config by ``runner = Runner.from_cfg(cfg)``
where the ``cfg`` usually contains training, validation, and test-related
configurations to build corresponding components. We usually use the
same config to launch training, testing, and validation tasks. However,
only some of these components are necessary at the same time, e.g.,
testing a model does not need training or validation-related components.
To avoid repeatedly modifying config, the construction of ``Runner`` adopts
lazy initialization to only initialize components when they are going to be
used. Therefore, the model is always initialized at the beginning, and
training, validation, and, testing related components are only initialized
when calling ``runner.train()``, ``runner.val()``, and ``runner.test()``,
respectively.
Warning:
This is an experimental feature, and its interface is subject to
change.
Args:
model (:obj:`torch.nn.Module` or dict): The model to be run. It can be
a dict used for build a model.
Kwargs:
work_dir (str, optional): The working directory to save checkpoints.
The logs will be saved in the subdirectory of `work_dir` named
:attr:`timestamp`. Defaults to 'work_dir'.
experiment_name (str, optional): Name of current experiment. If not
specified, timestamp will be used as ``experiment_name``.
Defaults to None.
train_dataloader (Dataloader or dict, optional): A dataloader object or
a dict to build a dataloader. If ``None`` is given, it means
skipping training steps. Defaults to None.
See :meth:`build_dataloader` for more details.
optim_wrapper (OptimWrapper or dict, optional):
Computing gradient of model parameters. If specified,
:attr:`train_dataloader` should also be specified. If automatic
mixed precision or gradient accmulation
training is required. The type of ``optim_wrapper`` should be
AmpOptimizerWrapper. See :meth:`build_optim_wrapper` for
examples. Defaults to None.
param_scheduler (_ParamScheduler or dict or list, optional):
Parameter scheduler for updating optimizer parameters. If
specified, :attr:`optimizer` should also be specified.
Defaults to None.
See :meth:`build_param_scheduler` for examples.
train_cfg (dict, optional): A dict to build a training loop. If it does
not provide "type" key, it should contain "by_epoch" to decide
which type of training loop :class:`EpochBasedTrainLoop` or
:class:`IterBasedTrainLoop` should be used. If ``train_cfg``
specified, :attr:`train_dataloader` should also be specified.
Defaults to None. See :meth:`build_train_loop` for more details.
val_dataloader (Dataloader or dict, optional): A dataloader object or
a dict to build a dataloader. If ``None`` is given, it means
skipping validation steps. Defaults to None.
See :meth:`build_dataloader` for more details.
val_evaluator (Evaluator or dict or list, optional): A evaluator object
used for computing metrics for validation. It can be a dict or a
list of dict to build a evaluator. If specified,
:attr:`val_dataloader` should also be specified. Defaults to None.
val_cfg (dict, optional): A dict to build a validation loop. If it does
not provide "type" key, :class:`ValLoop` will be used by default.
If ``val_cfg`` specified, :attr:`val_dataloader` should also be
specified. If ``ValLoop`` is built with `fp16=True``,
``runner.val()`` will be performed under fp16 precision.
test_dataloader (Dataloader or dict, optional): A dataloader object or
a dict to build a dataloader. If ``None`` is given, it means
skipping test steps. Defaults to None.
See :meth:`build_dataloader` for more details.
Defaults to None. See :meth:`build_val_loop` for more details.
test_evaluator (Evaluator or dict or list, optional): A evaluator
object used for computing metrics for test steps. It can be a dict
or a list of dict to build a evaluator. If specified,
:attr:`test_dataloader` should also be specified. Defaults to None.
test_cfg (dict, optional): A dict to build a test loop. If it does
not provide "type" key, :class:`TestLoop` will be used by default.
If ``test_cfg`` specified, :attr:`test_dataloader` should also be
specified. If ``ValLoop`` is built with `fp16=True``,
``runner.val()`` will be performed under fp16 precision.
Defaults to None. See :meth:`build_test_loop` for more details.
strategy (BaseStrategy or dict, optional): A strategy object or a dict
to build a strategy. Defaults to None. If not specified, the
strategy will be inferred automatically.
auto_scale_lr (dict, Optional): Config to scale the learning rate
automatically. It includes ``base_batch_size`` and ``enable``.
``base_batch_size`` is the batch size that the optimizer lr is
based on. ``enable`` is the switch to turn on and off the feature.
default_hooks (dict[str, dict] or dict[str, Hook], optional): Hooks to
execute default actions like updating model parameters and saving
checkpoints. Default hooks are ``OptimizerHook``,
``IterTimerHook``, ``LoggerHook``, ``ParamSchedulerHook`` and
``CheckpointHook``. Defaults to None.
See :meth:`register_default_hooks` for more details.
custom_hooks (list[dict] or list[Hook], optional): Hooks to execute
custom actions like visualizing images processed by pipeline.
Defaults to None.
data_preprocessor (dict, optional): The pre-process config of
:class:`BaseDataPreprocessor`. If the ``model`` argument is a dict
and doesn't contain the key ``data_preprocessor``, set the argument
as the ``data_preprocessor`` of the ``model`` dict.
Defaults to None.
load_from (str, optional): The checkpoint file to load from.
Defaults to None.
resume (bool): Whether to resume training. Defaults to False. If
``resume`` is True and ``load_from`` is None, automatically to
find latest checkpoint from ``work_dir``. If not found, resuming
does nothing.
launcher (str, optional): Way to launcher multi-process. Supported
launchers are 'pytorch', 'mpi', 'slurm' and 'none'. If 'none' is
provided, non-distributed environment will be launched.
If launcher is None, the launcher will be inferred according some
specified environments. Defaults to None.
env_cfg (dict): A dict used for setting environment. Defaults to
dict(dist_cfg=dict(backend='nccl')).
log_processor (dict, optional): A processor to format logs. Defaults to
None.
log_level (int or str): The log level of MMLogger handlers.
Defaults to 'INFO'.
visualizer (Visualizer or dict, optional): A Visualizer object or a
dict build Visualizer object. Defaults to None. If not
specified, default config will be used.
default_scope (str): Used to reset registries location.
Defaults to "mmengine".
randomness (dict): Some settings to make the experiment as reproducible
as possible like seed and deterministic.
Defaults to ``dict(seed=None)``. If seed is None, a random number
will be generated and it will be broadcasted to all other processes
if in distributed environment. If ``cudnn_benchmark`` is
``True`` in ``env_cfg`` but ``deterministic`` is ``True`` in
``randomness``, the value of ``torch.backends.cudnn.benchmark``
will be ``False`` finally.
compile (bool or dict, optional): Whether to enable ``torch.compile``.
Defaults to False.
cfg (dict or Configdict or :obj:`Config`, optional): Full config.
Defaults to None.
Note:
Since PyTorch 2.0.0, you can enable ``torch.compile`` by passing in
`compile = True`. If you want to control compile options, you
can pass a dict, e.g. ``cfg.compile = dict(backend='eager')``.
Refer to `PyTorch API Documentation <https://pytorch.org/docs/
master/generated/torch.compile.html#torch.compile>`_ for more valid
options.
Examples:
>>> from mmengine.runner import Runner
>>> cfg = dict(
>>> model=dict(type='ToyModel'),
>>> work_dir='path/of/work_dir',
>>> train_dataloader=dict(
>>> dataset=dict(type='ToyDataset'),
>>> sampler=dict(type='DefaultSampler', shuffle=True),
>>> batch_size=1,
>>> num_workers=0),
>>> val_dataloader=dict(
>>> dataset=dict(type='ToyDataset'),
>>> sampler=dict(type='DefaultSampler', shuffle=False),
>>> batch_size=1,
>>> num_workers=0),
>>> test_dataloader=dict(
>>> dataset=dict(type='ToyDataset'),
>>> sampler=dict(type='DefaultSampler', shuffle=False),
>>> batch_size=1,
>>> num_workers=0),
>>> auto_scale_lr=dict(base_batch_size=16, enable=False),
>>> optim_wrapper=dict(type='OptimizerWrapper', optimizer=dict(
>>> type='SGD', lr=0.01)),
>>> param_scheduler=dict(type='MultiStepLR', milestones=[1, 2]),
>>> val_evaluator=dict(type='ToyEvaluator'),
>>> test_evaluator=dict(type='ToyEvaluator'),
>>> train_cfg=dict(by_epoch=True, max_epochs=3, val_interval=1),
>>> val_cfg=dict(),
>>> test_cfg=dict(),
>>> custom_hooks=[],
>>> default_hooks=dict(
>>> timer=dict(type='IterTimerHook'),
>>> checkpoint=dict(type='CheckpointHook', interval=1),
>>> logger=dict(type='LoggerHook'),
>>> optimizer=dict(type='OptimizerHook', grad_clip=False),
>>> param_scheduler=dict(type='ParamSchedulerHook')),
>>> launcher='none',
>>> env_cfg=dict(dist_cfg=dict(backend='nccl')),
>>> log_processor=dict(window_size=20),
>>> visualizer=dict(type='Visualizer',
>>> vis_backends=[dict(type='LocalVisBackend',
>>> save_dir='temp_dir')])
>>> )
>>> runner = Runner.from_cfg(cfg)
>>> runner.train()
>>> runner.test()
"""
cfg: Config
_train_loop: Optional[Union[BaseLoop, Dict]]
_val_loop: Optional[Union[BaseLoop, Dict]]
_test_loop: Optional[Union[BaseLoop, Dict]]
def __init__(
self,
model: Union[nn.Module, Dict],
*,
work_dir: str = 'work_dirs',
experiment_name: Optional[str] = None,
train_dataloader: Optional[Union[DataLoader, Dict]] = None,
optim_wrapper: Optional[Union[OptimWrapper, Dict]] = None,
param_scheduler: Optional[Union[_ParamScheduler, Dict, List]] = None,
train_cfg: Optional[Dict] = None,
val_dataloader: Optional[Union[DataLoader, Dict]] = None,
val_evaluator: Optional[Union[Evaluator, Dict, List]] = None,
val_cfg: Optional[Dict] = None,
test_dataloader: Optional[Union[DataLoader, Dict]] = None,
test_evaluator: Optional[Union[Evaluator, Dict, List]] = None,
test_cfg: Optional[Dict] = None,
strategy: Optional[Union[BaseStrategy, Dict]] = None,
auto_scale_lr: Optional[Dict] = None,
default_hooks: Optional[Dict[str, Union[Hook, Dict]]] = None,
custom_hooks: Optional[List[Union[Hook, Dict]]] = None,
data_preprocessor: Union[nn.Module, Dict, None] = None,
load_from: Optional[str] = None,
resume: Union[str, bool] = False,
launcher: Optional[str] = None,
env_cfg: Dict = dict(dist_cfg=dict(backend='nccl')),
log_processor: Optional[Dict] = None,
log_level: str = 'INFO',
visualizer: Optional[Union[Visualizer, Dict]] = None,
default_scope: Optional[str] = 'mmengine',
randomness: Dict = dict(seed=None),
compile: Union[bool, Dict] = False,
cfg: Optional[ConfigType] = None,
):
if isinstance(model, dict) and data_preprocessor is not None:
# Merge the data_preprocessor to model config.
model.setdefault('data_preprocessor', data_preprocessor)
self.model = model
self._work_dir = osp.abspath(work_dir)
mmengine.mkdir_or_exist(self._work_dir)
# recursively copy the `cfg` because `self.cfg` will be modified
# everywhere.
if cfg is not None:
if isinstance(cfg, Config):
self.cfg = copy.deepcopy(cfg)
elif isinstance(cfg, dict):
self.cfg = Config(cfg)
else:
self.cfg = Config(dict())
# lazy initialization
training_related = [train_dataloader, train_cfg, optim_wrapper]
if not (all(item is None for item in training_related)
or all(item is not None for item in training_related)):
raise ValueError(
'train_dataloader, train_cfg, and optim_wrapper should be '
'either all None or not None, but got '
f'train_dataloader={train_dataloader}, '
f'train_cfg={train_cfg}, '
f'optim_wrapper={optim_wrapper}.')
self._train_dataloader = train_dataloader
self._train_loop = train_cfg
self.optim_wrapper: Optional[Union[OptimWrapper, dict]]
self.optim_wrapper = optim_wrapper
self._auto_scale_lr = auto_scale_lr
# If there is no need to adjust learning rate, momentum or other
# parameters of optimizer, param_scheduler can be None
if param_scheduler is not None and self.optim_wrapper is None:
raise ValueError(
'param_scheduler should be None when optim_wrapper is None, '
f'but got {param_scheduler}')
self.param_schedulers = param_scheduler
val_related = [val_dataloader, val_cfg, val_evaluator]
if not (all(item is None
for item in val_related) or all(item is not None
for item in val_related)):
raise ValueError(
'val_dataloader, val_cfg, and val_evaluator should be either '
'all None or not None, but got '
f'val_dataloader={val_dataloader}, val_cfg={val_cfg}, '
f'val_evaluator={val_evaluator}')
self._val_dataloader = val_dataloader
self._val_loop = val_cfg
self._val_evaluator = val_evaluator
test_related = [test_dataloader, test_cfg, test_evaluator]
if not (all(item is None for item in test_related)
or all(item is not None for item in test_related)):
raise ValueError(
'test_dataloader, test_cfg, and test_evaluator should be '
'either all None or not None, but got '
f'test_dataloader={test_dataloader}, test_cfg={test_cfg}, '
f'test_evaluator={test_evaluator}')
self._test_dataloader = test_dataloader
self._test_loop = test_cfg
self._test_evaluator = test_evaluator
if not isinstance(compile, bool) and not isinstance(compile, dict):
raise TypeError(
f'compile should be a bool or dict, but got {type(compile)}')
self._compile = compile
if isinstance(resume, str) and load_from is not None:
raise ValueError('If resume is a str, load_from should be None.')
self._load_from = load_from
self._resume = resume
# flag to mark whether checkpoint has been loaded or resumed
self._has_loaded = False
if launcher is None:
launcher = infer_launcher()
if experiment_name is None and self.cfg.filename is not None:
experiment_name = osp.splitext(osp.basename(self.cfg.filename))[0]
self._randomness_cfg = randomness
self.strategy = self.build_strategy(
strategy,
launcher=launcher,
randomness=randomness,
env_cfg=env_cfg,
experiment_name=experiment_name,
log_level=log_level,
)
# Used to reset registries location. See :meth:`Registry.build` for
# more details.
if default_scope is not None:
default_scope = DefaultScope.get_instance( # type: ignore
self.experiment_name,
scope_name=default_scope)
self.default_scope = default_scope
# Build log processor to format message.
log_processor = dict() if log_processor is None else log_processor
self.log_processor = self.build_log_processor(log_processor)
# Collect and log environment information.
self._log_env()
# Build `message_hub` for communication among components.
# `message_hub` can store log scalars (loss, learning rate) and
# runtime information (iter and epoch). Those components that do not
# have access to the runner can get iteration or epoch information
# from `message_hub`. For example, models can get the latest created
# `message_hub` by
# `self.message_hub=MessageHub.get_current_instance()` and then get
# current epoch by `cur_epoch = self.message_hub.get_info('epoch')`.
# See `MessageHub` and `ManagerMixin` for more details.
self.message_hub = self.build_message_hub()
# visualizer used for writing log or visualizing all kinds of data
self.visualizer = self.build_visualizer(visualizer)
if self.cfg:
self.visualizer.add_config(self.cfg)
self._hooks: List[Hook] = []
# register hooks to `self._hooks`
self.register_hooks(default_hooks, custom_hooks)
# log hooks information
self.logger.info(f'Hooks will be executed in the following '
f'order:\n{self.get_hooks_info()}')
# dump `cfg` to `work_dir`
self.dump_config()
[docs] @classmethod
def from_cfg(cls, cfg: ConfigType) -> 'FlexibleRunner':
"""Build a runner from config.
Args:
cfg (ConfigType): A config used for building runner. Keys of
``cfg`` can see :meth:`__init__`.
Returns:
Runner: A runner build from ``cfg``.
"""
cfg = copy.deepcopy(cfg)
runner = cls(
model=cfg['model'],
work_dir=cfg.get('work_dir', 'work_dirs'),
experiment_name=cfg.get('experiment_name'),
train_dataloader=cfg.get('train_dataloader'),
optim_wrapper=cfg.get('optim_wrapper'),
param_scheduler=cfg.get('param_scheduler'),
train_cfg=cfg.get('train_cfg'),
val_dataloader=cfg.get('val_dataloader'),
val_evaluator=cfg.get('val_evaluator'),
val_cfg=cfg.get('val_cfg'),
test_dataloader=cfg.get('test_dataloader'),
test_evaluator=cfg.get('test_evaluator'),
test_cfg=cfg.get('test_cfg'),
strategy=cfg.get('strategy'),
auto_scale_lr=cfg.get('auto_scale_lr'),
default_hooks=cfg.get('default_hooks'),
custom_hooks=cfg.get('custom_hooks'),
data_preprocessor=cfg.get('data_preprocessor'),
load_from=cfg.get('load_from'),
resume=cfg.get('resume', False),
launcher=cfg.get('launcher'),
env_cfg=cfg.get('env_cfg'), # type: ignore
log_processor=cfg.get('log_processor'),
log_level=cfg.get('log_level', 'INFO'),
visualizer=cfg.get('visualizer'),
default_scope=cfg.get('default_scope', 'mmengine'),
randomness=cfg.get('randomness', dict(seed=None)),
cfg=cfg,
)
return runner
@property
def experiment_name(self):
"""str: Name of experiment."""
return self.strategy.experiment_name
@property
def model_name(self):
"""str: Name of the model, usually the module class name."""
return self._model_name
@property
def work_dir(self):
"""str: The working directory to save checkpoints and logs."""
return self._work_dir
@property
def log_dir(self):
return self.strategy.log_dir
@property
def logger(self):
return self.strategy.logger
@property
def max_epochs(self):
"""int: Total epochs to train model."""
if isinstance(self.train_loop, BaseLoop):
return self.train_loop.max_epochs
else:
return 0
@property
def max_iters(self):
"""int: Total iterations to train model."""
if isinstance(self.train_loop, BaseLoop):
return self.train_loop.max_iters
else:
return 0
@property
def epoch(self):
"""int: Current epoch."""
if isinstance(self.train_loop, BaseLoop):
return self.train_loop.epoch
else:
return 0
@property
def iter(self):
"""int: Current iteration."""
if isinstance(self.train_loop, BaseLoop):
return self.train_loop.iter
else:
return 0
@property
def distributed(self):
"""bool: Whether current environment is distributed."""
return self.strategy.distributed
@property
def rank(self):
"""int: Rank of current process."""
return self.strategy.rank
@property
def world_size(self):
"""int: Number of processes participating in the job."""
return self.strategy.world_size
@property
def deterministic(self):
"""int: Whether cudnn to select deterministic algorithms."""
return self._deterministic
@property
def seed(self):
"""int: A number to set random modules."""
return self.strategy.seed
@property
def timestamp(self):
"""str: Timestamp when creating experiment."""
return self.strategy.timestamp
@property
def hooks(self):
"""list[:obj:`Hook`]: A list of registered hooks."""
return self._hooks
@property
def train_loop(self):
""":obj:`BaseLoop`: A loop to run training."""
if isinstance(self._train_loop, BaseLoop) or self._train_loop is None:
return self._train_loop
else:
self._train_loop = self.build_train_loop(self._train_loop)
return self._train_loop
@property
def val_loop(self):
""":obj:`BaseLoop`: A loop to run validation."""
if isinstance(self._val_loop, BaseLoop) or self._val_loop is None:
return self._val_loop
else:
self._val_loop = self.build_val_loop(self._val_loop)
return self._val_loop
@property
def test_loop(self):
""":obj:`BaseLoop`: A loop to run testing."""
if isinstance(self._test_loop, BaseLoop) or self._test_loop is None:
return self._test_loop
else:
self._test_loop = self.build_test_loop(self._test_loop)
return self._test_loop
@property
def train_dataloader(self):
"""The data loader for training."""
return self.train_loop.dataloader
@property
def val_dataloader(self):
"""The data loader for validation."""
return self.val_loop.dataloader
@property
def test_dataloader(self):
"""The data loader for testing."""
return self.test_loop.dataloader
@property
def val_evaluator(self):
""":obj:`Evaluator`: An evaluator for validation."""
return self.val_loop.evaluator
@property
def test_evaluator(self):
""":obj:`Evaluator`: An evaluator for testing."""
return self.test_loop.evaluator
@property
def val_interval(self):
"""int: Interval to run validation during training."""
return self.train_loop.val_interval
@property
def val_begin(self):
"""int: The epoch/iteration to start running validation during
training."""
return self.train_loop.val_begin
[docs] def build_strategy(
self,
strategy: Optional[Union[BaseStrategy, Dict]] = None,
launcher: str = 'none',
randomness: Optional[dict] = None,
env_cfg: dict = dict(dist_cfg=dict(backend='nccl')),
experiment_name: Optional[str] = None,
log_level: Optional[str] = None,
) -> BaseStrategy:
"""Build a strategy.
Args:
strategy (BaseStrategy, optional): A strategy object or dict to
build the strategy. Defaults to None.
Returns:
BaseStrategy: A strategy object.
"""
if isinstance(strategy, BaseStrategy):
strategy_obj = strategy
else:
if launcher == 'none':
if strategy is None:
strategy = dict(type='SingleDeviceStrategy')
else:
if strategy is None:
strategy = dict(type='DDPStrategy')
assert isinstance(strategy, dict)
# train_micro_batch_size_per_gpu is required by DeepSpeed
if isinstance(strategy['type'], str):
strategy_name = strategy['type']
else:
strategy_name = strategy['type'].__name__
if strategy_name == 'DeepSpeedStrategy':
if self._train_dataloader is None:
strategy['train_micro_batch_size_per_gpu'] = 1
else:
strategy['train_micro_batch_size_per_gpu'] = \
_get_batch_size(self._train_dataloader)
strategy.setdefault('work_dir', self._work_dir)
strategy.setdefault('experiment_name', experiment_name)
strategy.setdefault('auto_scale_lr', self._auto_scale_lr)
env_kwargs = dict(
launcher=launcher,
randomness=randomness,
**env_cfg,
)
strategy.setdefault('env_kwargs', env_kwargs)
log_kwargs = dict(log_level=log_level)
strategy.setdefault('log_kwargs', log_kwargs)
strategy_obj = STRATEGIES.build(strategy)
return strategy_obj
[docs] def build_message_hub(
self,
message_hub: Optional[Dict] = None,
) -> MessageHub:
"""Build a global asscessable MessageHub.
Args:
message_hub (dict, optional): A dict to build MessageHub object.
If not specified, default config will be used to build
MessageHub object. Defaults to None.
Returns:
MessageHub: A MessageHub object build from ``message_hub``.
"""
if message_hub is None:
message_hub = dict(name=self.experiment_name)
elif isinstance(message_hub, dict):
# ensure message_hub containing name key
message_hub.setdefault('name', self.experiment_name)
else:
raise TypeError(
f'message_hub should be dict or None, but got {message_hub}')
return MessageHub.get_instance(**message_hub)
[docs] def build_visualizer(
self,
visualizer: Optional[Union[Visualizer, Dict]] = None,
) -> Visualizer:
"""Build a global asscessable Visualizer.
Args:
visualizer (Visualizer or dict, optional): A Visualizer object
or a dict to build Visualizer object. If ``visualizer`` is a
Visualizer object, just returns itself. If not specified,
default config will be used to build Visualizer object.
Defaults to None.
Returns:
Visualizer: A Visualizer object build from ``visualizer``.
"""
if visualizer is None:
visualizer = dict(
name=self.experiment_name,
vis_backends=[dict(type='LocalVisBackend')],
save_dir=self.log_dir)
return Visualizer.get_instance(**visualizer)
if isinstance(visualizer, Visualizer):
return visualizer
if isinstance(visualizer, dict):
# ensure visualizer containing name key
visualizer.setdefault('name', self.experiment_name)
visualizer.setdefault('save_dir', self.log_dir)
return VISUALIZERS.build(visualizer)
else:
raise TypeError(
'visualizer should be Visualizer object, a dict or None, '
f'but got {visualizer}')
[docs] def build_evaluator(
self,
evaluator: Union[Dict, List, Evaluator],
) -> Evaluator:
"""Build evaluator.
Examples of ``evaluator``::
# evaluator could be a built Evaluator instance
evaluator = Evaluator(metrics=[ToyMetric()])
# evaluator can also be a list of dict
evaluator = [
dict(type='ToyMetric1'),
dict(type='ToyEvaluator2')
]
# evaluator can also be a list of built metric
evaluator = [ToyMetric1(), ToyMetric2()]
# evaluator can also be a dict with key metrics
evaluator = dict(metrics=ToyMetric())
# metric is a list
evaluator = dict(metrics=[ToyMetric()])
Args:
evaluator (Evaluator or dict or list): An Evaluator object or a
config dict or list of config dict used to build an Evaluator.
Returns:
Evaluator: Evaluator build from ``evaluator``.
"""
if isinstance(evaluator, Evaluator):
return evaluator
elif isinstance(evaluator, dict):
# if `metrics` in dict keys, it means to build customized evalutor
if 'metrics' in evaluator:
evaluator.setdefault('type', 'Evaluator')
return EVALUATOR.build(evaluator)
# otherwise, default evalutor will be built
else:
return Evaluator(evaluator) # type: ignore
elif isinstance(evaluator, list):
# use the default `Evaluator`
return Evaluator(evaluator) # type: ignore
else:
raise TypeError(
'evaluator should be one of dict, list of dict, and Evaluator'
f', but got {evaluator}')
[docs] @staticmethod
def build_dataloader(
dataloader: Union[DataLoader, Dict],
seed: Optional[int] = None,
diff_rank_seed: bool = False,
) -> DataLoader:
"""Build dataloader.
The method builds three components:
- Dataset
- Sampler
- Dataloader
An example of ``dataloader``::
dataloader = dict(
dataset=dict(type='ToyDataset'),
sampler=dict(type='DefaultSampler', shuffle=True),
batch_size=1,
num_workers=9
)
Args:
dataloader (DataLoader or dict): A Dataloader object or a dict to
build Dataloader object. If ``dataloader`` is a Dataloader
object, just returns itself.
seed (int, optional): Random seed. Defaults to None.
diff_rank_seed (bool): Whether or not set different seeds to
different ranks. If True, the seed passed to sampler is set
to None, in order to synchronize the seeds used in samplers
across different ranks. Defaults to False.
Returns:
Dataloader: DataLoader build from ``dataloader_cfg``.
"""
if isinstance(dataloader, DataLoader):
return dataloader
dataloader_cfg = copy.deepcopy(dataloader)
# build dataset
dataset_cfg = dataloader_cfg.pop('dataset')
if isinstance(dataset_cfg, dict):
dataset = DATASETS.build(dataset_cfg)
if hasattr(dataset, 'full_init'):
dataset.full_init()
else:
# fallback to raise error in dataloader
# if `dataset_cfg` is not a valid type
dataset = dataset_cfg
# build sampler
sampler_cfg = dataloader_cfg.pop('sampler')
if isinstance(sampler_cfg, dict):
sampler_seed = None if diff_rank_seed else seed
sampler = DATA_SAMPLERS.build(
sampler_cfg,
default_args=dict(dataset=dataset, seed=sampler_seed))
else:
# fallback to raise error in dataloader
# if `sampler_cfg` is not a valid type
sampler = sampler_cfg
# build batch sampler
batch_sampler_cfg = dataloader_cfg.pop('batch_sampler', None)
if batch_sampler_cfg is None:
batch_sampler = None
elif isinstance(batch_sampler_cfg, dict):
batch_sampler = DATA_SAMPLERS.build(
batch_sampler_cfg,
default_args=dict(
sampler=sampler,
batch_size=dataloader_cfg.pop('batch_size')))
else:
# fallback to raise error in dataloader
# if `batch_sampler_cfg` is not a valid type
batch_sampler = batch_sampler_cfg
# build dataloader
init_fn: Optional[partial]
if 'worker_init_fn' in dataloader_cfg:
worker_init_fn_cfg = dataloader_cfg.pop('worker_init_fn')
worker_init_fn_type = worker_init_fn_cfg.pop('type')
worker_init_fn = FUNCTIONS.get(worker_init_fn_type)
assert callable(worker_init_fn)
init_fn = partial(worker_init_fn,
**worker_init_fn_cfg) # type: ignore
else:
if seed is not None:
disable_subprocess_warning = dataloader_cfg.pop(
'disable_subprocess_warning', False)
assert isinstance(disable_subprocess_warning, bool), (
'disable_subprocess_warning should be a bool, but got '
f'{type(disable_subprocess_warning)}')
init_fn = partial(
default_worker_init_fn,
num_workers=dataloader_cfg.get('num_workers'),
rank=get_rank(),
seed=seed,
disable_subprocess_warning=disable_subprocess_warning)
else:
init_fn = None
# `persistent_workers` requires pytorch version >= 1.7
if ('persistent_workers' in dataloader_cfg
and digit_version(TORCH_VERSION) < digit_version('1.7.0')):
print_log(
'`persistent_workers` is only available when '
'pytorch version >= 1.7',
logger='current',
level=logging.WARNING)
dataloader_cfg.pop('persistent_workers')
# The default behavior of `collat_fn` in dataloader is to
# merge a list of samples to form a mini-batch of Tensor(s).
# However, in mmengine, if `collate_fn` is not defined in
# dataloader_cfg, `pseudo_collate` will only convert the list of
# samples into a dict without stacking the batch tensor.
collate_fn_cfg = dataloader_cfg.pop('collate_fn',
dict(type='pseudo_collate'))
if isinstance(collate_fn_cfg, dict):
collate_fn_type = collate_fn_cfg.pop('type')
if isinstance(collate_fn_type, str):
collate_fn = FUNCTIONS.get(collate_fn_type)
else:
collate_fn = collate_fn_type
collate_fn = partial(collate_fn, **collate_fn_cfg) # type: ignore
elif callable(collate_fn_cfg):
collate_fn = collate_fn_cfg
else:
raise TypeError(
'collate_fn should be a dict or callable object, but got '
f'{collate_fn_cfg}')
data_loader = DataLoader(
dataset=dataset,
sampler=sampler if batch_sampler is None else None,
batch_sampler=batch_sampler,
collate_fn=collate_fn,
worker_init_fn=init_fn,
**dataloader_cfg)
return data_loader
[docs] def build_train_loop(self, loop: Union[BaseLoop, Dict]) -> BaseLoop:
"""Build training loop.
Examples of ``loop``::
# `EpochBasedTrainLoop` will be used
loop = dict(by_epoch=True, max_epochs=3)
# `IterBasedTrainLoop` will be used
loop = dict(by_epoch=False, max_epochs=3)
# custom training loop
loop = dict(type='CustomTrainLoop', max_epochs=3)
Args:
loop (BaseLoop or dict): A training loop or a dict to build
training loop. If ``loop`` is a training loop object, just
returns itself.
Returns:
:obj:`BaseLoop`: Training loop object build from ``loop``.
"""
if isinstance(loop, BaseLoop):
return loop
elif not isinstance(loop, dict):
raise TypeError(
f'loop should be a Loop object or dict, but got {loop}')
loop_cfg = copy.deepcopy(loop)
if 'type' in loop_cfg and 'by_epoch' in loop_cfg:
raise RuntimeError(
'Only one of `type` or `by_epoch` can exist in `loop_cfg`.')
if 'type' in loop_cfg:
loop = LOOPS.build(
loop_cfg,
default_args=dict(
runner=self, dataloader=self._train_dataloader))
else:
by_epoch = loop_cfg.pop('by_epoch')
if by_epoch:
loop = EpochBasedTrainLoop(
**loop_cfg, runner=self, dataloader=self._train_dataloader)
else:
loop = IterBasedTrainLoop(
**loop_cfg, runner=self, dataloader=self._train_dataloader)
return loop # type: ignore
[docs] def build_val_loop(self, loop: Union[BaseLoop, Dict]) -> BaseLoop:
"""Build validation loop.
Examples of ``loop``:
# `ValLoop` will be used
loop = dict()
# custom validation loop
loop = dict(type='CustomValLoop')
Args:
loop (BaseLoop or dict): A validation loop or a dict to build
validation loop. If ``loop`` is a validation loop object, just
returns itself.
Returns:
:obj:`BaseLoop`: Validation loop object build from ``loop``.
"""
if isinstance(loop, BaseLoop):
return loop
elif not isinstance(loop, dict):
raise TypeError(
f'train_loop should be a Loop object or dict, but got {loop}')
loop_cfg = copy.deepcopy(loop)
if 'type' in loop_cfg:
loop = LOOPS.build(
loop_cfg,
default_args=dict(
runner=self,
dataloader=self._val_dataloader,
evaluator=self._val_evaluator))
else:
loop = ValLoop(
**loop_cfg,
runner=self,
dataloader=self._val_dataloader,
evaluator=self._val_evaluator) # type: ignore
return loop # type: ignore
[docs] def build_test_loop(self, loop: Union[BaseLoop, Dict]) -> BaseLoop:
"""Build test loop.
Examples of ``loop``::
# `TestLoop` will be used
loop = dict()
# custom test loop
loop = dict(type='CustomTestLoop')
Args:
loop (BaseLoop or dict): A test loop or a dict to build test loop.
If ``loop`` is a test loop object, just returns itself.
Returns:
:obj:`BaseLoop`: Test loop object build from ``loop_cfg``.
"""
if isinstance(loop, BaseLoop):
return loop
elif not isinstance(loop, dict):
raise TypeError(
f'train_loop should be a Loop object or dict, but got {loop}')
loop_cfg = copy.deepcopy(loop) # type: ignore
if 'type' in loop_cfg:
loop = LOOPS.build(
loop_cfg,
default_args=dict(
runner=self,
dataloader=self._test_dataloader,
evaluator=self._test_evaluator))
else:
loop = TestLoop(
**loop_cfg,
runner=self,
dataloader=self._test_dataloader,
evaluator=self._test_evaluator) # type: ignore
return loop # type: ignore
[docs] def build_log_processor(
self,
log_processor: Union[LogProcessor, Dict],
) -> LogProcessor:
"""Build test log_processor.
Examples of ``log_processor``:
# `LogProcessor` will be used
log_processor = dict()
# custom log_processor
log_processor = dict(type='CustomLogProcessor')
Args:
log_processor (LogProcessor or dict): A log processor or a dict
to build log processor. If ``log_processor`` is a log processor
object, just returns itself.
Returns:
:obj:`LogProcessor`: Log processor object build from
``log_processor_cfg``.
"""
if isinstance(log_processor, LogProcessor):
return log_processor
elif not isinstance(log_processor, dict):
raise TypeError(
'log processor should be a LogProcessor object or dict, but'
f'got {log_processor}')
log_processor_cfg = copy.deepcopy(log_processor) # type: ignore
if 'type' in log_processor_cfg:
log_processor = LOG_PROCESSORS.build(log_processor_cfg)
else:
log_processor = LogProcessor(**log_processor_cfg) # type: ignore
return log_processor # type: ignore
def get_hooks_info(self) -> str:
# Get hooks info in each stage
stage_hook_map: Dict[str, list] = {stage: [] for stage in Hook.stages}
for hook in self.hooks:
try:
priority = Priority(hook.priority).name # type: ignore
except ValueError:
priority = hook.priority # type: ignore
classname = hook.__class__.__name__
hook_info = f'({priority:<12}) {classname:<35}'
for trigger_stage in hook.get_triggered_stages():
stage_hook_map[trigger_stage].append(hook_info)
stage_hook_infos = []
for stage in Hook.stages:
hook_infos = stage_hook_map[stage]
if len(hook_infos) > 0:
info = f'{stage}:\n'
info += '\n'.join(hook_infos)
info += '\n -------------------- '
stage_hook_infos.append(info)
return '\n'.join(stage_hook_infos)
[docs] def load_or_resume(self):
"""load or resume checkpoint."""
if self._has_loaded:
return None
if not self._resume and self._load_from is None:
return None
# decide to load from checkpoint or resume from checkpoint
resume_from = None
if isinstance(self._resume, str):
resume_from = self._resume
elif self._resume and self._load_from is None:
# auto resume from the latest checkpoint
resume_from = find_latest_checkpoint(self.work_dir)
self.logger.info(
f'Auto resumed from the latest checkpoint {resume_from}.')
elif self._resume and self._load_from is not None:
# resume from the specified checkpoint
resume_from = self._load_from
if resume_from is not None:
self.resume(resume_from)
self._has_loaded = True
elif self._load_from is not None:
self.load_checkpoint(self._load_from)
self._has_loaded = True
[docs] def train(self) -> nn.Module:
"""Launch training.
Returns:
nn.Module: The model after training.
"""
if self._train_loop is None:
raise RuntimeError(
'`self._train_loop` should not be None when calling train '
'method. Please provide `train_dataloader`, `train_cfg`, '
'`optimizer` and `param_scheduler` arguments when '
'initializing runner.')
self._train_loop = self.build_train_loop(
self._train_loop) # type: ignore
if self._val_loop is not None:
self._val_loop = self.build_val_loop(
self._val_loop) # type: ignore
compile: Union[dict, bool] = False
if isinstance(self._compile, bool):
if self._compile:
compile = dict(target='train_step')
else:
compile = copy.copy(self._compile)
compile.setdefault('target', 'train_step')
dispatch_kwargs = dict(
epoch_length=len(self.train_dataloader),
max_epochs=self.max_epochs,
max_iters=self.max_iters,
train_micro_batch_size_per_gpu=_get_batch_size(
self.train_dataloader)) # type: ignore
self.strategy.prepare(
self.model,
optim_wrapper=self.optim_wrapper,
param_scheduler=self.param_schedulers,
compile=compile,
dispatch_kwargs=dispatch_kwargs,
)
self.model = self.strategy.model
self.optim_wrapper = self.strategy.optim_wrapper # type: ignore
if self.param_schedulers is not None:
self.param_schedulers = self.strategy.param_schedulers
self.load_or_resume()
# TODO: add a contextmanager to avoid calling `before_run` many times
self.call_hook('before_run')
model = self.train_loop.run() # type: ignore
self.call_hook('after_run')
return model
[docs] def val(self) -> dict:
"""Launch validation.
Returns:
dict: A dict of metrics on validation set.
"""
if self._val_loop is None:
raise RuntimeError(
'`self._val_loop` should not be None when calling val method.'
'Please provide `val_dataloader`, `val_cfg` and '
'`val_evaluator` arguments when initializing runner.')
self._val_loop = self.build_val_loop(self._val_loop) # type: ignore
dispatch_kwargs = dict(
init_weights_for_test_or_val=self.cfg.get(
'init_weights_for_test_or_val', True))
self.strategy.prepare(self.model, dispatch_kwargs=dispatch_kwargs)
self.model = self.strategy.model
self.load_or_resume()
self.call_hook('before_run')
metrics = self.val_loop.run() # type: ignore
self.call_hook('after_run')
return metrics
[docs] def test(self) -> dict:
"""Launch test.
Returns:
dict: A dict of metrics on testing set.
"""
if self._test_loop is None:
raise RuntimeError(
'`self._test_loop` should not be None when calling test '
'method. Please provide `test_dataloader`, `test_cfg` and '
'`test_evaluator` arguments when initializing runner.')
self._test_loop = self.build_test_loop(self._test_loop) # type: ignore
dispatch_kwargs = dict(
init_weights_for_test_or_val=self.cfg.get(
'init_weights_for_test_or_val', True))
self.strategy.prepare(self.model, dispatch_kwargs=dispatch_kwargs)
self.model = self.strategy.model
self.load_or_resume()
self.call_hook('before_run')
metrics = self.test_loop.run() # type: ignore
self.call_hook('after_run')
return metrics
[docs] def call_hook(self, fn_name: str, **kwargs) -> None:
"""Call all hooks.
Args:
fn_name (str): The function name in each hook to be called, such as
"before_train_epoch".
**kwargs: Keyword arguments passed to hook.
"""
for hook in self._hooks:
# support adding additional custom hook methods
if hasattr(hook, fn_name):
try:
getattr(hook, fn_name)(self, **kwargs)
except TypeError as e:
raise TypeError(f'{e} in {hook}') from e
[docs] def register_hook(
self,
hook: Union[Hook, Dict],
priority: Optional[Union[str, int, Priority]] = None,
) -> None:
"""Register a hook into the hook list.
The hook will be inserted into a priority queue, with the specified
priority (See :class:`Priority` for details of priorities).
For hooks with the same priority, they will be triggered in the same
order as they are registered.
Priority of hook will be decided with the following priority:
- ``priority`` argument. If ``priority`` is given, it will be priority
of hook.
- If ``hook`` argument is a dict and ``priority`` in it, the priority
will be the value of ``hook['priority']``.
- If ``hook`` argument is a dict but ``priority`` not in it or ``hook``
is an instance of ``hook``, the priority will be ``hook.priority``.
Args:
hook (:obj:`Hook` or dict): The hook to be registered.
priority (int or str or :obj:`Priority`, optional): Hook priority.
Lower value means higher priority.
"""
if not isinstance(hook, (Hook, dict)):
raise TypeError(
f'hook should be an instance of Hook or dict, but got {hook}')
_priority = None
if isinstance(hook, dict):
if 'priority' in hook:
_priority = hook.pop('priority')
hook_obj = HOOKS.build(hook)
else:
hook_obj = hook
if priority is not None:
hook_obj.priority = priority
elif _priority is not None:
hook_obj.priority = _priority
inserted = False
for i in range(len(self._hooks) - 1, -1, -1):
if get_priority(hook_obj.priority) >= get_priority(
self._hooks[i].priority):
self._hooks.insert(i + 1, hook_obj)
inserted = True
break
if not inserted:
self._hooks.insert(0, hook_obj)
[docs] def register_default_hooks(
self,
hooks: Optional[Dict[str, Union[Hook, Dict]]] = None,
) -> None:
"""Register default hooks into hook list.
``hooks`` will be registered into runner to execute some default
actions like updating model parameters or saving checkpoints.
Default hooks and their priorities:
+----------------------+-------------------------+
| Hooks | Priority |
+======================+=========================+
| RuntimeInfoHook | VERY_HIGH (10) |
+----------------------+-------------------------+
| IterTimerHook | NORMAL (50) |
+----------------------+-------------------------+
| DistSamplerSeedHook | NORMAL (50) |
+----------------------+-------------------------+
| LoggerHook | BELOW_NORMAL (60) |
+----------------------+-------------------------+
| ParamSchedulerHook | LOW (70) |
+----------------------+-------------------------+
| CheckpointHook | VERY_LOW (90) |
+----------------------+-------------------------+
If ``hooks`` is None, above hooks will be registered by
default::
default_hooks = dict(
runtime_info=dict(type='RuntimeInfoHook'),
timer=dict(type='IterTimerHook'),
sampler_seed=dict(type='DistSamplerSeedHook'),
logger=dict(type='LoggerHook'),
param_scheduler=dict(type='ParamSchedulerHook'),
checkpoint=dict(type='CheckpointHook', interval=1),
)
If not None, ``hooks`` will be merged into ``default_hooks``.
If there are None value in default_hooks, the corresponding item will
be popped from ``default_hooks``::
hooks = dict(timer=None)
The final registered default hooks will be :obj:`RuntimeInfoHook`,
:obj:`DistSamplerSeedHook`, :obj:`LoggerHook`,
:obj:`ParamSchedulerHook` and :obj:`CheckpointHook`.
Args:
hooks (dict[str, Hook or dict], optional): Default hooks or configs
to be registered.
"""
default_hooks: dict = dict(
runtime_info=dict(type='RuntimeInfoHook'),
timer=dict(type='IterTimerHook'),
sampler_seed=dict(type='DistSamplerSeedHook'),
logger=dict(type='LoggerHook'),
param_scheduler=dict(type='ParamSchedulerHook'),
checkpoint=dict(type='CheckpointHook', interval=1),
)
if hooks is not None:
for name, hook in hooks.items():
if name in default_hooks and hook is None:
# remove hook from _default_hooks
default_hooks.pop(name)
else:
assert hook is not None
default_hooks[name] = hook
for hook in default_hooks.values():
self.register_hook(hook)
[docs] def register_custom_hooks(self, hooks: List[Union[Hook, Dict]]) -> None:
"""Register custom hooks into hook list.
Args:
hooks (list[Hook | dict]): List of hooks or configs to be
registered.
"""
for hook in hooks:
self.register_hook(hook)
[docs] def register_hooks(
self,
default_hooks: Optional[Dict[str, Union[Hook, Dict]]] = None,
custom_hooks: Optional[List[Union[Hook, Dict]]] = None,
) -> None:
"""Register default hooks and custom hooks into hook list.
Args:
default_hooks (dict[str, dict] or dict[str, Hook], optional): Hooks
to execute default actions like updating model parameters and
saving checkpoints. Defaults to None.
custom_hooks (list[dict] or list[Hook], optional): Hooks to execute
custom actions like visualizing images processed by pipeline.
Defaults to None.
"""
self.register_default_hooks(default_hooks)
if custom_hooks is not None:
self.register_custom_hooks(custom_hooks)
[docs] def resume(
self,
filename: str,
resume_optimizer: bool = True,
resume_param_scheduler: bool = True,
map_location: Union[str, Callable] = 'default',
) -> None:
"""Resume model from checkpoint.
Args:
filename (str): Accept local filepath, URL, ``torchvision://xxx``,
``open-mmlab://xxx``.
resume_optimizer (bool): Whether to resume optimizer state.
Defaults to True.
resume_param_scheduler (bool): Whether to resume param scheduler
state. Defaults to True.
map_location (str or callable):A string or a callable function to
specifying how to remap storage locations.
Defaults to 'default'.
"""
def callback(checkpoint):
self.call_hook('after_load_checkpoint', checkpoint=checkpoint)
checkpoint = self.strategy.resume(
filename,
resume_optimizer=resume_optimizer,
resume_param_scheduler=resume_param_scheduler,
map_location=map_location,
callback=callback,
)
self.train_loop._epoch = checkpoint['meta']['epoch']
self.train_loop._iter = checkpoint['meta']['iter']
# check whether the number of GPU used for current experiment
# is consistent with resuming from checkpoint
if 'config' in checkpoint['meta']:
config = mmengine.Config.fromstring(
checkpoint['meta']['config'], file_format='.py')
previous_gpu_ids = config.get('gpu_ids', None)
if (previous_gpu_ids is not None and len(previous_gpu_ids) > 0
and len(previous_gpu_ids) != self.world_size):
# TODO, should we modify the iteration?
self.logger.info(
'Number of GPU used for current experiment is not '
'consistent with resuming from checkpoint')
if (self._auto_scale_lr is None
or not self._auto_scale_lr.get('enable', False)):
raise RuntimeError(
'Cannot automatically rescale lr in resuming. Please '
'make sure the number of GPU is consistent with the '
'previous training state resuming from the checkpoint '
'or set `enable` in `auto_scale_lr to False.')
resumed_dataset_meta = checkpoint['meta'].get('dataset_meta', None)
dataset_meta = getattr(self.train_dataloader.dataset, 'metainfo', None)
# `resumed_dataset_meta` and `dataset_meta` could be object like
# np.ndarray, which cannot be directly judged as equal or not,
# therefore we just compared their dumped results.
if pickle.dumps(resumed_dataset_meta) != pickle.dumps(dataset_meta):
self.logger.warning(
'The dataset metainfo from the resumed checkpoint is '
'different from the current training dataset, please '
'check the correctness of the checkpoint or the training '
'dataset.')
self.message_hub.load_state_dict(checkpoint['message_hub'])
self.logger.info(f'resumed epoch: {self.epoch}, iter: {self.iter}')
[docs] def load_checkpoint(self,
filename: str,
map_location: Union[str, Callable] = 'cpu',
strict: bool = False,
revise_keys: list = [(r'^module.', '')]):
"""Load checkpoint from given ``filename``.
Args:
filename (str): Accept local filepath, URL, ``torchvision://xxx``,
``open-mmlab://xxx``.
map_location (str or callable): A string or a callable function to
specifying how to remap storage locations.
Defaults to 'cpu'.
strict (bool): strict (bool): Whether to allow different params for
the model and checkpoint.
revise_keys (list): A list of customized keywords to modify the
state_dict in checkpoint. Each item is a (pattern, replacement)
pair of the regular expression operations. Defaults to strip
the prefix 'module.' by [(r'^module\\.', '')].
"""
def callback(checkpoint):
self.call_hook('after_load_checkpoint', checkpoint=checkpoint)
self.strategy.load_checkpoint(
filename,
map_location=map_location,
strict=strict,
revise_keys=revise_keys,
callback=callback)
[docs] def save_checkpoint(
self,
out_dir: str,
filename: str,
file_client_args: Optional[dict] = None,
save_optimizer: bool = True,
save_param_scheduler: bool = True,
meta: dict = None,
by_epoch: bool = True,
backend_args: Optional[dict] = None,
):
"""Save checkpoints.
``CheckpointHook`` invokes this method to save checkpoints
periodically.
Args:
out_dir (str): The directory that checkpoints are saved.
filename (str): The checkpoint filename.
file_client_args (dict, optional): Arguments to instantiate a
FileClient. See :class:`mmengine.fileio.FileClient` for
details. Defaults to None. It will be deprecated in future.
Please use `backend_args` instead.
save_optimizer (bool): Whether to save the optimizer to
the checkpoint. Defaults to True.
save_param_scheduler (bool): Whether to save the param_scheduler
to the checkpoint. Defaults to True.
meta (dict, optional): The meta information to be saved in the
checkpoint. Defaults to None.
by_epoch (bool): Whether the scheduled momentum is updated by
epochs. Defaults to True.
backend_args (dict, optional): Arguments to instantiate the
prefix of uri corresponding backend. Defaults to None.
"""
if meta is None:
meta = {}
elif not isinstance(meta, dict):
raise TypeError(
f'meta should be a dict or None, but got {type(meta)}')
if by_epoch:
# self.epoch increments 1 after
# `self.call_hook('after_train_epoch)` but `save_checkpoint` is
# called by `after_train_epoch`` method of `CheckpointHook` so
# `epoch` should be `self.epoch + 1`
meta.update(epoch=self.epoch + 1, iter=self.iter)
else:
meta.update(epoch=self.epoch, iter=self.iter + 1)
if file_client_args is not None:
warnings.warn(
'"file_client_args" will be deprecated in future. '
'Please use "backend_args" instead', DeprecationWarning)
if backend_args is not None:
raise ValueError(
'"file_client_args" and "backend_args" cannot be set at '
'the same time.')
file_client = FileClient.infer_client(file_client_args, out_dir)
filepath = file_client.join_path(out_dir, filename)
else:
filepath = join_path( # type: ignore
out_dir, filename, backend_args=backend_args)
meta.update(
cfg=self.cfg.pretty_text, experiment_name=self.experiment_name)
if hasattr(self.train_dataloader.dataset, 'metainfo'):
meta.update(dataset_meta=self.train_dataloader.dataset.metainfo)
checkpoint = {
'meta': meta,
'message_hub': self.message_hub.state_dict()
}
def callback(checkpoint):
self.call_hook('before_save_checkpoint', checkpoint=checkpoint)
self.strategy.save_checkpoint(
filename=filepath,
save_optimizer=save_optimizer,
save_param_scheduler=save_param_scheduler,
extra_ckpt=checkpoint,
callback=callback,
)
[docs] @master_only
def dump_config(self) -> None:
"""Dump config to `work_dir`."""
if self.cfg.filename is not None:
filename = osp.basename(self.cfg.filename)
else:
filename = f'{self.timestamp}.py'
self.cfg.dump(osp.join(self.work_dir, filename))
def _log_env(self) -> None:
"""Logging environment information of the current task.
Args:
env_cfg (dict): The environment config of the runner.
"""
# Collect and log environment information.
system_env, runtime_env = self.strategy.collect_env()
env_info = '\n ' + '\n '.join(f'{k}: {v}'
for k, v in system_env.items())
runtime_env_info = '\n ' + '\n '.join(
f'{k}: {v}' for k, v in runtime_env.items())
dash_line = '-' * 60
self.logger.info('\n' + dash_line + '\nSystem environment:' +
env_info + '\n'
'\nRuntime environment:' + runtime_env_info + '\n' +
dash_line + '\n')
if self.cfg._cfg_dict:
self.logger.info(f'Config:\n{self.cfg.pretty_text}')