Shortcuts

Source code for mmengine.utils.dl_utils.misc

# Copyright (c) OpenMMLab. All rights reserved.
import pkgutil
from typing import Optional, Tuple, Union

import numpy as np
import torch
import torch.nn as nn

from ..misc import is_tuple_of
from .parrots_wrapper import _BatchNorm, _InstanceNorm


[docs]def is_norm(layer: nn.Module, exclude: Optional[Union[type, Tuple[type]]] = None) -> bool: """Check if a layer is a normalization layer. Args: layer (nn.Module): The layer to be checked. exclude (type, tuple[type], optional): Types to be excluded. Returns: bool: Whether the layer is a norm layer. """ if exclude is not None: if not isinstance(exclude, tuple): exclude = (exclude, ) if not is_tuple_of(exclude, type): raise TypeError( f'"exclude" must be either None or type or a tuple of types, ' f'but got {type(exclude)}: {exclude}') if exclude and isinstance(layer, exclude): return False all_norm_bases = (_BatchNorm, _InstanceNorm, nn.GroupNorm, nn.LayerNorm) return isinstance(layer, all_norm_bases)
[docs]def tensor2imgs(tensor: torch.Tensor, mean: Optional[Tuple[float, float, float]] = None, std: Optional[Tuple[float, float, float]] = None, to_bgr: bool = True): """Convert tensor to 3-channel images or 1-channel gray images. Args: tensor (torch.Tensor): Tensor that contains multiple images, shape ( N, C, H, W). :math:`C` can be either 3 or 1. If C is 3, the format should be RGB. mean (tuple[float], optional): Mean of images. If None, (0, 0, 0) will be used for tensor with 3-channel, while (0, ) for tensor with 1-channel. Defaults to None. std (tuple[float], optional): Standard deviation of images. If None, (1, 1, 1) will be used for tensor with 3-channel, while (1, ) for tensor with 1-channel. Defaults to None. to_bgr (bool): For the tensor with 3 channel, convert its format to BGR. For the tensor with 1 channel, it must be False. Defaults to True. Returns: list[np.ndarray]: A list that contains multiple images. """ assert torch.is_tensor(tensor) and tensor.ndim == 4 channels = tensor.size(1) assert channels in [1, 3] if mean is None: mean = (0, ) * channels if std is None: std = (1, ) * channels assert (channels == len(mean) == len(std) == 3) or \ (channels == len(mean) == len(std) == 1 and not to_bgr) mean = tensor.new_tensor(mean).view(1, -1) std = tensor.new_tensor(std).view(1, -1) tensor = tensor.permute(0, 2, 3, 1) * std + mean imgs = tensor.detach().cpu().numpy() if to_bgr and channels == 3: imgs = imgs[:, :, :, (2, 1, 0)] # RGB2BGR imgs = [np.ascontiguousarray(img) for img in imgs] return imgs
[docs]def has_batch_norm(model: nn.Module) -> bool: """Detect whether model has a BatchNormalization layer. Args: model (nn.Module): training model. Returns: bool: whether model has a BatchNormalization layer """ if isinstance(model, _BatchNorm): return True for m in model.children(): if has_batch_norm(m): return True return False
[docs]def mmcv_full_available() -> bool: """Check whether mmcv-full is installed. Returns: bool: True if mmcv-full is installed else False. """ try: import mmcv # noqa: F401 except ImportError: return False ext_loader = pkgutil.find_loader('mmcv._ext') return ext_loader is not None

© Copyright 2022, mmengine contributors. Revision d1f1aabf.

Built with Sphinx using a theme provided by Read the Docs.
Read the Docs v: latest
Versions
latest
stable
v0.10.4
v0.10.3
v0.10.2
v0.10.1
v0.10.0
v0.9.1
v0.9.0
v0.8.5
v0.8.4
v0.8.3
v0.8.2
v0.8.1
v0.8.0
v0.7.4
v0.7.3
v0.7.2
v0.7.1
v0.7.0
v0.6.0
v0.5.0
v0.4.0
v0.3.0
v0.2.0
Downloads
epub
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.