mmengine.dist.all_reduce_dict¶
- mmengine.dist.all_reduce_dict(data, op='sum', group=None)[source]¶
Reduces the dict across all machines in such a way that all get the final result.
The code is modified from https://github.com/Megvii- BaseDetection/YOLOX/blob/main/yolox/utils/allreduce_norm.py.
- Parameters:
op (str) – Operation to reduce data. Defaults to ‘sum’. Optional values are ‘sum’, ‘mean’ and ‘produce’, ‘min’, ‘max’, ‘band’, ‘bor’ and ‘bxor’.
group (ProcessGroup, optional) – The process group to work on. If None, the default process group will be used. Defaults to None.
- Return type:
None
Examples
>>> import torch >>> import mmengine.dist as dist
>>> # non-distributed environment >>> data = { 'key1': torch.arange(2, dtype=torch.int64), 'key2': torch.arange(3, dtype=torch.int64) } >>> dist.all_reduce_dict(data) >>> data {'key1': tensor([0, 1]), 'key2': tensor([0, 1, 2])}
>>> # distributed environment >>> # We have 2 process groups, 2 ranks. >>> data = { 'key1': torch.arange(2, dtype=torch.int64), 'key2': torch.arange(3, dtype=torch.int64) } >>> dist.all_reduce_dict(data) >>> data {'key1': tensor([0, 2]), 'key2': tensor([0, 2, 4])} # Rank 0 {'key1': tensor([0, 2]), 'key2': tensor([0, 2, 4])} # Rank 1