AimVisBackend¶
- class mmengine.visualization.AimVisBackend(save_dir=None, init_kwargs=None)[source]¶
Aim visualization backend class.
Examples
>>> from mmengine.visualization import AimVisBackend >>> import numpy as np >>> aim_vis_backend = AimVisBackend() >>> img=np.random.randint(0, 256, size=(10, 10, 3)) >>> aim_vis_backend.add_image('img', img) >>> aim_vis_backend.add_scalar('mAP', 0.6) >>> aim_vis_backend.add_scalars({'loss': 0.1, 'acc': 0.8}) >>> cfg = Config(dict(a=1, b=dict(b1=[0, 1]))) >>> aim_vis_backend.add_config(cfg)
Note
New in version 0.9.0.
Refer to Github issue , Aim is not unable to be install on Windows for now.
- Parameters:
- add_config(config, **kwargs)[source]¶
Record the config to Aim.
- Parameters:
config (Config) – The Config object
- Return type:
None
- add_scalar(name, value, step=0, **kwargs)[source]¶
Record the scalar data to Aim.
- Parameters:
name (str) – The scalar identifier.
value (int, float, torch.Tensor, np.ndarray) – Value to save.
step (int) – Global step value to record. Default to 0.
- Return type:
None
- add_scalars(scalar_dict, step=0, file_path=None, **kwargs)[source]¶
Record the scalar’s data to wandb.
- property experiment¶
Return Aim object.