EpochBasedTraining to IterBasedTraining¶
Epoch-based training and iteration-based training are two commonly used training way in MMEngine. For example, downstream repositories like MMDetection choose to train the model by epoch and MMSegmentation choose to train the model by iteration.
Many modules in MMEngine default to training models by epoch, such as ParamScheduler
, LoggerHook
, CheckPointHook
, etc. Therefore, you need to adjust the configuration of these modules if you want to train by iteration. For example, a commonly used epoch based configuration is as follows:
param_scheduler = dict(
type='MultiStepLR',
milestones=[6, 8]
by_epoch=True # by_epoch is True by default
)
default_hooks = dict(
logger=dict(type='LoggerHook', log_metric_by_epoch=True), # log_metric_by_epoch is True by default
checkpoint=dict(type='CheckpointHook', interval=2, by_epoch=True), # by_epoch is True by default
)
train_cfg = dict(
by_epoch=True, # set by_epoch=True or type='EpochBasedTrainLoop'
max_epochs=10,
val_interval=2
)
log_processor = dict(
by_epoch=True
) # This is the default configuration, and just set it here for comparison.
runner = Runner(
model=ResNet18(),
work_dir='./work_dir',
# Assuming train_dataloader is configured with an epoch-based sampler
train_dataloader=train_dataloader_cfg,
optim_wrapper=dict(optimizer=dict(type='SGD', lr=0.001, momentum=0.9)),
param_scheduler=param_scheduler
default_hooks=default_hooks,
log_processor=log_processor,
train_cfg=train_cfg,
resume=True,
)
There are four steps to convert the above configuration to iteration based training:
Set
by_epoch
intrain_cfg
to False, and setmax_iters
to the total number of training iterations andval_interval
to the interval between validation iterations.train_cfg = dict( by_epoch=False, max_iters=10000, val_interval=2000 )
Set
log_metric_by_epoch
toFalse
in logger andby_epoch
toFalse
in checkpoint.default_hooks = dict( logger=dict(type='LoggerHook', log_metric_by_epoch=False), checkpoint=dict(type='CheckpointHook', by_epoch=False, interval=2000), )
Set
by_epoch
in param_scheduler toFalse
and convert any epoch-related parameters to iteration.param_scheduler = dict( type='MultiStepLR', milestones=[6000, 8000], by_epoch=False, )
Alternatively, if you can ensure that the total number of iterations for IterBasedTraining and EpochBasedTraining is the same, simply set
convert_to_iter_based
to True.param_scheduler = dict( type='MultiStepLR', milestones=[6, 8] convert_to_iter_based=True )
Set by_epoch in log_processor to False.
log_processor = dict( by_epoch=False )
Take training CIFAR10 as an example:
Step | Training by epoch | Training by iteration |
---|---|---|
Build model | import torch.nn.functional as F
import torchvision
from mmengine.model import BaseModel
class MMResNet50(BaseModel):
def __init__(self):
super().__init__()
self.resnet = torchvision.models.resnet50()
def forward(self, imgs, labels, mode):
x = self.resnet(imgs)
if mode == 'loss':
return {'loss': F.cross_entropy(x, labels)}
elif mode == 'predict':
return x, labels
|
|
Build dataloader |
import torchvision.transforms as transforms
from torch.utils.data import DataLoader
norm_cfg = dict(mean=[0.491, 0.482, 0.447], std=[0.202, 0.199, 0.201])
train_dataloader = DataLoader(
batch_size=32,
shuffle=True,
dataset=torchvision.datasets.CIFAR10(
'data/cifar10',
train=True,
download=True,
transform=transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(**norm_cfg)])))
val_dataloader = DataLoader(
batch_size=32,
shuffle=False,
dataset=torchvision.datasets.CIFAR10(
'data/cifar10',
train=False,
download=True,
transform=transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(**norm_cfg)])))
|
|
Prepare metric |
from mmengine.evaluator import BaseMetric
class Accuracy(BaseMetric):
def process(self, data_batch, data_samples):
score, gt = data_samples
# save the middle result of a batch to `self.results`
self.results.append({
'batch_size': len(gt),
'correct': (score.argmax(dim=1) == gt).sum().cpu(),
})
def compute_metrics(self, results):
total_correct = sum(item['correct'] for item in results)
total_size = sum(item['batch_size'] for item in results)
# return the dict containing the eval results
# the key is the name of the metric name
return dict(accuracy=100 * total_correct / total_size)
|
|
Configure default hooks |
default_hooks = dict(
logger=dict(type='LoggerHook', log_metric_by_epoch=True),
checkpoint=dict(type='CheckpointHook', interval=2, by_epoch=True),
)
|
default_hooks = dict(
logger=dict(type='LoggerHook', log_metric_by_epoch=False),
checkpoint=dict(type='CheckpointHook', by_epoch=False, interval=2000),
)
|
Configure parameter scheduler |
param_scheduler = dict(
type='MultiStepLR',
milestones=[6, 8]
by_epoch=True
)
|
param_scheduler = dict(
type='MultiStepLR',
milestones=[6000, 8000],
by_epoch=False,
)
|
Configure log_processor |
# The default configuration of log_processor is used for epoch based training.
# Defining it here additionally is for building runner with the same way.
log_processor = dict(by_epoch=True)
|
log_processor = dict(by_epoch=False)
|
Configure train_cfg |
train_cfg = dict(
by_epoch=True,
max_epochs=10,
val_interval=2
)
|
train_cfg = dict(
by_epoch=False,
max_iters=10000,
val_interval=2000
)
|
Build Runner |
from torch.optim import SGD
from mmengine.runner import Runner
runner = Runner(
model=MMResNet50(),
work_dir='./work_dir',
train_dataloader=train_dataloader,
optim_wrapper=dict(optimizer=dict(type=SGD, lr=0.001, momentum=0.9)),
train_cfg=train_cfg,
log_processor=log_processor,
default_hooks=default_hooks,
val_dataloader=val_dataloader,
val_cfg=dict(),
val_evaluator=dict(type=Accuracy),
)
runner.train()
|
Note
If the base configuration file has configured a epoch/iteration based sampler for the train_dataloader, then it is necessary to change it to a specified type of sampler in the current configuration file, or set it to None. When the sampler in the dataloader is set to None, MMEngine will choose either the InfiniteSampler (when by_epoch is False) or the DefaultSampler (when by_epoch is True) according to the train_cfg parameter.
Note
If type
is configured for the train_cfg
in the base configuration, you must overwrite the type to target type (EpochBasedTrainLoop or IterBasedTrainLoop) rather than simply set by_epoch
to True/False.