Shortcuts

Train a Segmentation Model

This segmentation task example will be divided into the following steps:

Note

You can also experience the notebook example here.

Download Camvid Dataset

First, you should download the Camvid dataset from OpenDataLab:

# https://opendatalab.com/CamVid
# Configure install
pip install opendatalab
# Upgraded version
pip install -U opendatalab
# Login
odl login
# Download this dataset
mkdir data
odl get CamVid -d data
# Preprocess data in Linux. You should extract the files to data manually in
# Windows
tar -xzvf data/CamVid/raw/CamVid.tar.gz.00 -C ./data

Implement the Camvid Dataset

We have implemented the CamVid class here, which inherits from VisionDataset. Within this class, we have overridden the __getitem__ and __len__ methods to ensure that each index returns a dict of images and labels. Additionally, we have implemented the color_to_class dictionary to map the mask’s color to the class index.

import os
import numpy as np
from torchvision.datasets import VisionDataset
from PIL import Image
import csv


def create_palette(csv_filepath):
    color_to_class = {}
    with open(csv_filepath, newline='') as csvfile:
        reader = csv.DictReader(csvfile)
        for idx, row in enumerate(reader):
            r, g, b = int(row['r']), int(row['g']), int(row['b'])
            color_to_class[(r, g, b)] = idx
    return color_to_class

class CamVid(VisionDataset):

    def __init__(self,
                 root,
                 img_folder,
                 mask_folder,
                 transform=None,
                 target_transform=None):
        super().__init__(
            root, transform=transform, target_transform=target_transform)
        self.img_folder = img_folder
        self.mask_folder = mask_folder
        self.images = list(
            sorted(os.listdir(os.path.join(self.root, img_folder))))
        self.masks = list(
            sorted(os.listdir(os.path.join(self.root, mask_folder))))
        self.color_to_class = create_palette(
            os.path.join(self.root, 'class_dict.csv'))

    def __getitem__(self, index):
        img_path = os.path.join(self.root, self.img_folder, self.images[index])
        mask_path = os.path.join(self.root, self.mask_folder,
                                 self.masks[index])

        img = Image.open(img_path).convert('RGB')
        mask = Image.open(mask_path).convert('RGB')  # Convert to RGB

        if self.transform is not None:
            img = self.transform(img)

        # Convert the RGB values to class indices
        mask = np.array(mask)
        mask = mask[:, :, 0] * 65536 + mask[:, :, 1] * 256 + mask[:, :, 2]
        labels = np.zeros_like(mask, dtype=np.int64)
        for color, class_index in self.color_to_class.items():
            rgb = color[0] * 65536 + color[1] * 256 + color[2]
            labels[mask == rgb] = class_index

        if self.target_transform is not None:
            labels = self.target_transform(labels)
        data_samples = dict(
            labels=labels, img_path=img_path, mask_path=mask_path)
        return img, data_samples

    def __len__(self):
        return len(self.images)

We utilize the Camvid dataset to create the train_dataloader and val_dataloader, which serve as the data loaders for training and validation in the subsequent Runner.

import torch
import torchvision.transforms as transforms

norm_cfg = dict(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
transform = transforms.Compose(
            [transforms.ToTensor(),
             transforms.Normalize(**norm_cfg)])

target_transform = transforms.Lambda(
        lambda x: torch.tensor(np.array(x), dtype=torch.long))

train_set = CamVid(
    'data/CamVid',
    img_folder='train',
    mask_folder='train_labels',
    transform=transform,
    target_transform=target_transform)

valid_set = CamVid(
    'data/CamVid',
    img_folder='val',
    mask_folder='val_labels',
    transform=transform,
    target_transform=target_transform)

train_dataloader = dict(
    batch_size=3,
    dataset=train_set,
    sampler=dict(type='DefaultSampler', shuffle=True),
    collate_fn=dict(type='default_collate'))

val_dataloader = dict(
    batch_size=3,
    dataset=valid_set,
    sampler=dict(type='DefaultSampler', shuffle=False),
    collate_fn=dict(type='default_collate'))

Implement the Segmentation Model

The provided code defines a model class named MMDeeplabV3. This class is derived from BaseModel and incorporates the segmentation model of the DeepLabV3 architecture. It overrides the forward method to handle both input images and labels and supports computing losses and returning predictions in both training and prediction modes.

For additional information about BaseModel, you can refer to the Model tutorial.

from mmengine.model import BaseModel
from torchvision.models.segmentation import deeplabv3_resnet50
import torch.nn.functional as F


class MMDeeplabV3(BaseModel):

    def __init__(self, num_classes):
        super().__init__()
        self.deeplab = deeplabv3_resnet50(num_classes=num_classes)

    def forward(self, imgs, data_samples=None, mode='tensor'):
        x = self.deeplab(imgs)['out']
        if mode == 'loss':
            return {'loss': F.cross_entropy(x, data_samples['labels'])}
        elif mode == 'predict':
            return x, data_samples

Training with Runner

Before training with the Runner, we need to implement the IoU (Intersection over Union) metric to evaluate the model’s performance.

from mmengine.evaluator import BaseMetric

class IoU(BaseMetric):

    def process(self, data_batch, data_samples):
        preds, labels = data_samples[0], data_samples[1]['labels']
        preds = torch.argmax(preds, dim=1)
        intersect = (labels == preds).sum()
        union = (torch.logical_or(preds, labels)).sum()
        iou = (intersect / union).cpu()
        self.results.append(
            dict(batch_size=len(labels), iou=iou * len(labels)))

    def compute_metrics(self, results):
        total_iou = sum(result['iou'] for result in self.results)
        num_samples = sum(result['batch_size'] for result in self.results)
        return dict(iou=total_iou / num_samples)

Implementing a visualization hook is also important to facilitate easier comparison between predictions and labels.

from mmengine.hooks import Hook
import shutil
import cv2
import os.path as osp


class SegVisHook(Hook):

    def __init__(self, data_root, vis_num=1) -> None:
        super().__init__()
        self.vis_num = vis_num
        self.palette = create_palette(osp.join(data_root, 'class_dict.csv'))

    def after_val_iter(self,
                       runner,
                       batch_idx: int,
                       data_batch=None,
                       outputs=None) -> None:
        if batch_idx > self.vis_num:
            return
        preds, data_samples = outputs
        img_paths = data_samples['img_path']
        mask_paths = data_samples['mask_path']
        _, C, H, W = preds.shape
        preds = torch.argmax(preds, dim=1)
        for idx, (pred, img_path,
                  mask_path) in enumerate(zip(preds, img_paths, mask_paths)):
            pred_mask = np.zeros((H, W, 3), dtype=np.uint8)
            runner.visualizer.set_image(pred_mask)
            for color, class_id in self.palette.items():
                runner.visualizer.draw_binary_masks(
                    pred == class_id,
                    colors=[color],
                    alphas=1.0,
                )
            # Convert RGB to BGR
            pred_mask = runner.visualizer.get_image()[..., ::-1]
            saved_dir = osp.join(runner.log_dir, 'vis_data', str(idx))
            os.makedirs(saved_dir, exist_ok=True)

            shutil.copyfile(img_path,
                            osp.join(saved_dir, osp.basename(img_path)))
            shutil.copyfile(mask_path,
                            osp.join(saved_dir, osp.basename(mask_path)))
            cv2.imwrite(
                osp.join(saved_dir, f'pred_{osp.basename(img_path)}'),
                pred_mask)

Finnaly, just train the model with Runner!

from torch.optim import AdamW
from mmengine.optim import AmpOptimWrapper
from mmengine.runner import Runner


num_classes = 32  # Modify to actual number of categories.

runner = Runner(
    model=MMDeeplabV3(num_classes),
    work_dir='./work_dir',
    train_dataloader=train_dataloader,
    optim_wrapper=dict(
        type=AmpOptimWrapper, optimizer=dict(type=AdamW, lr=2e-4)),
    train_cfg=dict(by_epoch=True, max_epochs=10, val_interval=10),
    val_dataloader=val_dataloader,
    val_cfg=dict(),
    val_evaluator=dict(type=IoU),
    custom_hooks=[SegVisHook('data/CamVid')],
    default_hooks=dict(checkpoint=dict(type='CheckpointHook', interval=1)),
)
runner.train()

Finnaly, you can check the training results in the folder ./work_dir/{timestamp}/vis_data.

image prediction label
Read the Docs v: stable
Versions
latest
stable
v0.10.4
v0.10.3
v0.10.2
v0.10.1
v0.10.0
v0.9.1
v0.9.0
v0.8.5
v0.8.4
v0.8.3
v0.8.2
v0.8.1
v0.8.0
v0.7.4
v0.7.3
v0.7.2
v0.7.1
v0.7.0
v0.6.0
v0.5.0
v0.4.0
v0.3.0
v0.2.0
Downloads
epub
On Read the Docs
Project Home
Builds

Free document hosting provided by Read the Docs.