Setting the Frequency of Logging, Checkpoint Saving, and Validation¶
MMEngine supports two training modes, EpochBased
based on epochs and IterBased
based on the number of iterations. Both of these modes are used in downstream algorithm libraries such as MMDetection, which uses the EpochBased
mode by default, and MMSegmentation, which uses the IterBased
mode by default.
In different training modes, the semantics of the interval in MMEngine will be different. In EpochBased mode, the interval is in terms of epochs, while in IterBased mode, the interval is in terms of iterations.
Setting the Interval for Training and Validation¶
To customize the interval for training and validation, set the val_interval
parameter in the initialization parameter train_cfg
of Runner.
EpochBased
In EpochBased
mode, the default value of val_interval
is 1, which means to validate once after training an epoch.
runner = Runner(
model=MMResNet50(),
work_dir='./work_dir',
train_dataloader=train_dataloader,
optim_wrapper=dict(optimizer=dict(type=SGD, lr=0.001, momentum=0.9)),
train_cfg=dict(by_epoch=True, max_epochs=5, val_interval=1),
val_dataloader=val_dataloader,
val_cfg=dict(),
val_evaluator=dict(type=Accuracy),
)
runner.train()
IterBased
In IterBased
mode, the default value of val_interval
is 1000, which means to validate once after training 1000 iterations.
runner = Runner(
model=MMResNet50(),
work_dir='./work_dir',
train_dataloader=train_dataloader,
optim_wrapper=dict(optimizer=dict(type=SGD, lr=0.001, momentum=0.9)),
train_cfg=dict(by_epoch=False, max_iters=10000, val_interval=2000),
val_dataloader=val_dataloader,
val_cfg=dict(),
val_evaluator=dict(type=Accuracy),
)
runner.train()
Setting the Interval for Saving Checkpoints¶
To customize the interval for saving checkpoints, set the interval
parameter of CheckpointHook.
EpochBased
In EpochBased
mode, the default value of interval
is 1, which means to save checkpoints once after training for one epoch.
# set the interval to 2, which means to save checkpoints every 2 epochs
default_hooks = dict(checkpoint=dict(type='CheckpointHook', interval=2))
runner = Runner(
model=MMResNet50(),
work_dir='./work_dir',
train_dataloader=train_dataloader,
optim_wrapper=dict(optimizer=dict(type=SGD, lr=0.001, momentum=0.9)),
train_cfg=dict(by_epoch=True, max_epochs=5, val_interval=1),
val_dataloader=val_dataloader,
val_cfg=dict(),
val_evaluator=dict(type=Accuracy),
default_hooks=default_hooks,
)
runner.train()
IterBased
By default, checkpoints are saved in terms of epochs. If you want to save checkpoints in terms of iterations, you need to set by_epoch=False
.
# set by_epoch=False and interval=500, which means to save checkpoints every 500 iterations
default_hooks = dict(checkpoint=dict(type='CheckpointHook', by_epoch=False, interval=500))
runner = Runner(
model=MMResNet50(),
work_dir='./work_dir',
train_dataloader=train_dataloader,
optim_wrapper=dict(optimizer=dict(type=SGD, lr=0.001, momentum=0.9)),
train_cfg=dict(by_epoch=False, max_iters=10000, val_interval=1000),
val_dataloader=val_dataloader,
val_cfg=dict(),
val_evaluator=dict(type=Accuracy),
default_hooks=default_hooks,
)
runner.train()
For more information on how to use CheckpointHook
, please refer to the CheckpointHook tutorial.
Setting the Interval for Printing Logs¶
By default, logs are printed to the terminal once every 10 iterations. You can set the interval using the interval
parameter of the LoggerHook.
# print logs every 20 iterations
default_hooks = dict(logger=dict(type='LoggerHook', interval=20))
runner = Runner(
model=MMResNet50(),
work_dir='./work_dir',
train_dataloader=train_dataloader,
optim_wrapper=dict(optimizer=dict(type=SGD, lr=0.001, momentum=0.9)),
train_cfg=dict(by_epoch=True, max_epochs=5, val_interval=1),
val_dataloader=val_dataloader,
val_cfg=dict(),
val_evaluator=dict(type=Accuracy),
default_hooks=default_hooks,
)
runner.train()
For more information on how to use LoggerHook
, please refer to the LoggerHook tutorial.