Shortcuts

Source code for mmengine.hooks.empty_cache_hook

# Copyright (c) OpenMMLab. All rights reserved.
from typing import Optional, Sequence, Union

import torch

from mmengine.registry import HOOKS
from ..device import is_cuda_available, is_musa_available
from .hook import Hook

DATA_BATCH = Optional[Union[dict, tuple, list]]


[docs]@HOOKS.register_module() class EmptyCacheHook(Hook): """Releases all unoccupied cached GPU memory during the process of training. Args: before_epoch (bool): Whether to release cache before an epoch. Defaults to False. after_epoch (bool): Whether to release cache after an epoch. Defaults to True. after_iter (bool): Whether to release cache after an iteration. Defaults to False. """ priority = 'NORMAL' def __init__(self, before_epoch: bool = False, after_epoch: bool = True, after_iter: bool = False) -> None: self._do_before_epoch = before_epoch self._do_after_epoch = after_epoch self._do_after_iter = after_iter def _after_iter(self, runner, batch_idx: int, data_batch: DATA_BATCH = None, outputs: Optional[Union[dict, Sequence]] = None, mode: str = 'train') -> None: """Empty cache after an iteration. Args: runner (Runner): The runner of the training process. batch_idx (int): The index of the current batch in the loop. data_batch (dict or tuple or list, optional): Data from dataloader. outputs (dict or sequence, optional): Outputs from model. mode (str): Current mode of runner. Defaults to 'train'. """ if self._do_after_iter: if is_cuda_available(): torch.cuda.empty_cache() elif is_musa_available(): torch.musa.empty_cache() def _before_epoch(self, runner, mode: str = 'train') -> None: """Empty cache before an epoch. Args: runner (Runner): The runner of the training process. mode (str): Current mode of runner. Defaults to 'train'. """ if self._do_before_epoch: if is_cuda_available(): torch.cuda.empty_cache() elif is_musa_available(): torch.musa.empty_cache() def _after_epoch(self, runner, mode: str = 'train') -> None: """Empty cache after an epoch. Args: runner (Runner): The runner of the training process. mode (str): Current mode of runner. Defaults to 'train'. """ if self._do_after_epoch: if is_cuda_available(): torch.cuda.empty_cache() elif is_musa_available(): torch.musa.empty_cache()